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Abstract

Since standard European semitrailers usually utilize an unsteered rear tri-axle group they are
produced with low financial efforts but have a high tire wear (especially at the rearmost axle)
and a reduced maneuverability. This work shows that an actively steered rearmost axle at a
semitrailer can improve the performance during low-speed turning maneuvers, high-speed cornering
and could intervene during critical situations such as rollover. After some general fundamentals of
vehicle dynamics are summarized, the current state of art with respect to steered semitrailers is
discussed. Linear and nonlinear tractor-semitrailer single-track models are derived, which take the
lateral and yaw motion of the coupled vehicles into account and can be used for the development
of different steering strategies for an enhanced maneuverability. In this scope a steady-state and
feedback control strategy is developed. In addition, a 2-degree of freedom controller combines both
strategies. Furthermore, the models are extended in order to account for the roll motions of the
system at high-speed. A simple “active rollover damping control law” is proposed and investigated,
which intervenes with the trailer steering and aims to reduce the risk of a rollover. In conclusion, the
2-degree of freedom control law improves the maneuverability of a whole tractor-semitrailer system
and the active rollover damping strategy decreases the risk of a rollover significantly during critical
maneuvers. The derived models and strategies provide different chances for further optimizations,
improvments and implementations on real tractor-semitrailer prototypes.
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Chapter 1

Introduction

1.1 Motivation

Vehicle dynamics control of articulated heavy vehicles, such as tractor-semitrailer (TST) combina-
tions, pose major challenges compared to passenger cars. For instance, a TST results in an increased
complexity of the governing dynamics: the available energy is limited, the regarded mass loaded on
the vehicle changes, and the requirements towards reliability need to be fulfilled. Articulation and a
high center of gravity challenge the tractor and semitrailer combination, especially in terms of road
safety i.e. the risk of a rollover (illustrated in figure 1.1) should be decreased. Standard European
semitrailers utilize an unsteered tri-axle group. These semitrailers with an unsteered tri-axle group
are produced with low financial efforts but later have a high tire wear and reduced maneuverability.

Figure 1.1: Rollover of a real TST in Zhejiang (China) in April 2011. This screen-shots are retouched
and extracted from the video of a monitoring camera, published on the website www.youtube.com.

The objective of this thesis is to investigate the utilization of a semitrailer steering in order to
improve the performance during low-speed turning maneuvers, high-speed cornering and interven-
tions during critical situations such as rollover. Strategies for robust control of the rearmost trailer
axle have to be developed and for the implementation of the corresponding control architectures,
the numerical simulation environment “MATLAB/Simulink” is available. The controller for the
rearmost axle must meet the software and hardware requirements. The performance of the con-
troller can be evaluated with a single track model and a multibody system (MBS) model in the
simulation software “SimPack”.
Figure 1.2 represents a five-axle articulated tractor with semitrailer which will be the focus of this

1
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TractorSemitrailer

5th-Wheel
Active Steered Rearmost Axle

Human Driver

Human Steered Front AxleHitch

Additional Cargo

Figure 1.2: Tractor and semitrailer (TST) with an actively steered rearmost axle.

thesis. The tractor unit is considered to be driven by a human, steering the front axle, opening
the throttle and pushing the brake. The semitrailer has three axles, whereby the rearmost axle
is equipped with an electronically controlled command steering system. The towing unit (tractor)
and semitrailer are coupled by a so-called 5th-wheel hitch. It is designed to bear the vertical load
imposed by the front of the semitrailer.

Especially during low-speed turning maneuvers the active steering system could not only reduce the
tire wear and driving resistance (∝ CO2), but also might allow greater cargo dimensions. Figure 1.3
clarifies the benefits and compares the maneuverability of a steered and unsteered semitrailer.

12.5 m

5.3 m

(b) Standard European Semitrailer

(a) Semitrailer with Steered Rearmost Axle

Additional Cargo

Reduced Tirewear &

Driving Resistance

Figure 1.3: Tractor with a steered (a) or unsteered (b) semitrailer during a low-speed turning circle
maneuver (german: “BO-Kraftkreis”), required by the European road traffic regulations.
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Since the steered axle improves the maneuverability, the semitrailer can be increased and additional
cargo can be transported. This leads to a higher efficiency, saves costs and resources.

1.2 Structure and Scope

This thesis is structured as follows:

• Chapter 2 Introduction of fundamentals of vehicle dynamics with respect to the characteri-
zation of the tires, basic vehicle modeling and TST specific approaches. Furthermore, insights
of previous research are given.

• Chapter 3 Derivation of a linear and nonlinear horizontal TST model to describe the lateral
vehicle dynamics at low-speed. In addition, the derived models will be extended in order to
account for the roll motions of the system at high-speed. Finally, an existing SimPack model
will be introduced.

• Chapter 4 Development of control strategies for the tractor front axle steering and the
semitrailer rearmost axle steering. A controller will be proposed, which aims to reduce the
risk of a trailer rollover.

• Chapter 5 Implementation of the derived models and controllers in the simulation envi-
ronments. The influences and improvements of the steering strategies will be investigated,
analyzing the simulation results of the horizontal and vertical roll-extended models during
certain maneuvers.

• Chapter 6 Summary of main aspects are given, including conclusion and future research
topics.
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Chapter 2

Fundamentals and State of the Art

2.1 Basics of Vehicle Dynamics

This chapter is meant to serve as an introduction to ground vehicle dynamics in order to present
the characteristics of tires, development of vehicle models and explaining related technical terms.
The focus is laid on the description of lateral dynamics during cornering at low and high velocity.

2.1.1 Tire Mechanics

The performance of a ground vehicle is mainly influenced by the tires. The tires interact between
the road and the vehicle and their properties are important for the dynamic behavior. This section
briefly gives the basic aspects of the force and moment generating properties of a pneumatic tire.
Normal and friction forces are transmitted at the point of contact between a tire and the road
surface. In figure 2.1 the SAE-standard for axis system [SAE76] is shown. The tire is centered in
the wheel plane perpendicular to the axis of rotation. Since it moves with the velocity v in the

x

v

z

y

Ω

γ

α

Wheel
plane

inclination

slip

Direction of
wheel heading

Direction of
wheel travel

Spin axis

Angular velocity

Mx

My

Mz

Normal force (Fz)

Lateral force (Fy)

v

Rolling resistance

Overturning moment

Aligning

torque

Longitudial
force (Fx)

Figure 2.1: Tire axis system and terminology according to SAE-standards [SAE76].
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Fy

Fy

(b) Tire deformation in y-direction(a) Tire deformation on ground surface

Direction of
wheel heading Direction of

wheel travel
α

contact patch

Fy
Mz

slip

Figure 2.2: Origin of lateral forces.

direction of travel, side slip occurs. The lateral component of the slip is described by the tire side
slip angle α which effects a lateral force Fy. Because of this slip angle, the material in the contact
patch of the elastic tire is drifting to the side, explained in [Gil92] and illustrated in figure 2.2 (a).
The deformation of the tire is also indicated in the cross-sectional view of figure 2.2 (b). Since this
thesis mainly considers simplified tire behavior of trucks in planar motions, the inclination of the
wheels can be neglected. Full details about tire dynamics like e.g. the force and stress distribution
at the contact patch are discussed in [Jaz09].
Different tire models are proposed for the calculation of the lateral force during a simulation in
the literature of vehicle dynamics. One of the most common tire models is defined by the so-called
“magic formula” in [Pac02]. According to this formula, the lateral force Fy can be calculated in
dependency of the slip angle α and vertical force Fz,

Fy = D sin [arctan{Bα− E(Bα− arctan(Bα))}] (2.1)

with the stiffness factor B =
Cα
CD

, (2.2)

the peak factor D = µFz, (2.3)

and cornering stiffness Cα = c1 sin(2 arctan

(
Fz
c2

)
) (SAE: Cα < 0). (2.4)

The shape factors C and E as well as the parameters c1 and c2 together with the friction coefficient µ
are depending on the tire material and design. They can be determined by experiments or empirical
values from the literature. The lateral force obtained by the ”magic formula” is schematically shown
in figure 2.3 with respect to the slip angle. The relation is linear for small slip angles and can be
approximated by the function

Fy,lin(α) = Cα α (SAE: Cα < 0). (2.5)

As proposed in [Viv12] a saturated tire-force-law can be used in order to characterize the force
behavior for larger slip angles,

Fy,sat(α) =

{
Cα α for |α| < αsat

Fy,max else
, where Cα < 0. (2.6)
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linear approximation

linear-saturated

”magic formula”

Lateral force Fy

slip angle α

approximation

CFα

Figure 2.3: Approximation of the lateral force in dependence of the slip angle according to Pacejka’s
tire model [Pac02] (SAE: Cα < 0).

The approximated tire-law also prevents the transgression of the linear range, which may cause
excessive lateral forces during a simulation process.

2.1.2 Bicycle Model

This section intends to introduce a simplified model of a four-wheeled vehicle with Ackermann
steering according to Riekert and Schunck (1940). Their linear theories of vehicle modeling has
also been published by e.g. [Zom83]. As the two wheels on each axle are modeled by a centered
substitute wheel, their models are also known as ”bicycle models” or ”single-track models”. The
substitute wheel represents the tire and suspension characteristics of the related axle. Figure 2.4
displays the so-called bicycle model during a steady state cornering of the vehicle at low velocity.
The distance between the steered wheels of the front axle is defined by w, and the distance of

β0

lr

lf

c.g.

δ

i.c.r.

vr

v

vf

β0

δ

Ω0

Rr0

δi δo

w

Inner wheel Outer wheel

Rcg0

Figure 2.4: Conception of a single-track-model (Bicycle Model) based on an Ackermann steering.
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the center of gravity (c.g.) to the front axle respectively to the rear axle is denoted by lf and lr.
The center of the reared axle moves with the velocity vr along a circle track with the radius Rr0.
So the vehicle is turning with a constant angular velocity Ω0 around the instantaneous center of
rotation (i.c.r.). In analogy, the c.g. and the center of the front axle are moving with v and vf . With
the assumption of low velocity, the centrifugal force can be neglected which leads to the following
geometric conditions for the inner and outer steer angles

tan δi =
l

Rr0 − w
2

tan δo =
l

Rr0 + w
2

(2.7)

⇒ cot δo − cot δi =
w

l
. (2.8)

This is called the Ackermann condition, where l = lr+lf describes the wheelbase. The steer angle δ
of the single track model relates to the geometric lengths with

tan δ =
l

Rr0
. (2.9)

This equation can be used to eliminate the radius Rr0 in (2.7),

cot δi = cot δ − w

2l
cot δo = cot δ +

w

2l
. (2.10)

The bicycle steer angle is the cot-average of the inner and outer steer angles of the four-wheeled
vehicle

cot δ =
cot δo + cot δi

2
, (2.11)

as it is also derived in [Jaz09]. Including the equation (2.9) it can be shown that the mass center
of the vehicle turns with the radius

Rcg0 =
√
l2r + l2 cot2 δ (2.12)

on the circle. The introduced relations are only valid for a small steady state cornering velocity v,
as already mentioned.
In case of the steady state cornering at high velocity, lateral accelerations must be taken into
account. In order to react against the centrifugal forces the tires develop the slip angles causing
lateral forces. Figure 2.5 shows the difference between steady state cornering of a bicycle model at
low (a) and high (b) velocity. Due to the slip, the position of the i.c.r changes in dependency of the
vehicle and the road conditions. According to the equation (2.5), the front and rear tire forces Fyf
and Fyr are linear related to the front and rear slip angles αf and αr with

Fyf = Cαf αf and Fyr = Cαr αr, (2.13)

whereby Cαf and Cαr are the effective cornering stiffness at the front and rear axle. For the
determination of the slip angles, it is necessary to consider the explicit wheel velocities more detailed
as shown in figure 2.6. Since the vehicle is turning with the angular velocity (or yaw angular
velocity) ω around the c.g. and for a small body slip (β << 1), the rear and front wheel velocities
can be approximately calculated with

vr ≈
√
v2 + (ωlr)2 and vf ≈

√
v2 + (ωlf )2, (2.14)

where the absolute velocity of the vehicle is denoted by v. Furthermore, the following relationships
can be derived for the body slip angle β,

tan(αr + β) ≈ ωlr
v

and tan(δ − αf − β) ≈ ωlf
v

. (2.15)
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β0

lr

lf

c.g.

δ

i.c.r.

vr

v → 0

vf

β0

δ

β

c.g.

δ

i.c.r.

vr

v

vf
αf

αr

(a) low speed (b) high speed

Rcg0

Rcg

Rr

Rr0

mv2

Rcg

Fyr

Fyf

Figure 2.5: Geometric conditions for a single-track-model of a two-axle vehicle for steady state
cornering.

The assumption of small angles (tan(]) ≈ ]) leads to simplified calculations of the slip angles,

αr ≈
ωlr
v
− β and αf ≈ δ −

ωlf
v
− β. (2.16)

In order to describe the dynamic behavior of the vehicle the equation of motions can be derived
as it is proposed in [PS10]. Using the vehicle-fixed frame OK in correspondence to figure 2.6, the
movement of the vehicle in the direction of eK1 , eK2 and the rotation around eK3 can be expressed
by

v1 = v cosβ

v2 = v sinβ

ω3 = ω, respectively.

(2.17)

With respect to the inertial coordinate system, the time derivative leads to the acceleration

a1 = v̇ cosβ − vβ̇ sinβ − ω v sinβ

a2 = v̇ sinβ + vβ̇ cosβ + ω v cosβ

α3 = ω̇.

(2.18)

For most applications it is sufficient to assume a small body slip angle β << 1 and v = const, which
leads in a matrix notation to a1

a2

α3

 =

0 0
v 0
0 1


︸ ︷︷ ︸
L̄

[
β̇
ω̇

]
︸︷︷︸
ż

+

−v ω βvω
0

 . (2.19)

The matrix L̄ denotes the Jacobian matrix and the vector ż of the generalized velocities. As
proposed in [PS10] an air resistance force Ax, lateral aerodynamic force Ay and an external mo-
ment MA react on the vehicle. Furthermore Fxr and Fxf are the longitudinal forces acting on the
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β

m , I

δ

i.c.r.

vr

v

vf

αf

αr

Rcg

Rr

mv2

Rcg

Fyr

Fyf

π
2 − αr

π
2 − β

αr + β

δ − αf
− β

δ − αf + αr
ω

v

ωlr

ωlr

ωlf

v

ωlf

eK1
eK2

OK

Fxr

Fxf

Ax

Ay
MA

Figure 2.6: Single-track-model of a two-axle vehicle at high velocity.

tires in the direction of the wheel heading. Neglecting small quadratically terms, the Newton-Euler
equations for the vehicle with the mass m and moment of inertia I results in 0 0

mv 0
0 I

[β̇
ω̇

]
+

−mv ω βmvω
0

 =

 Fxf + Fxr −Ax
−Fyf − Fyr +Ay
Fyrlr − Fyf lf +MA

 . (2.20)

Applying the Jourdain’s principle, the equations of motion followed by a left multiplication with

the transposed Jacobian matrix L̄
T

,[
mv2 0

0 I

] [
β̇
ω̇

]
+

[
mv2ω

0

] [
v(−Fyf − Fyr +Ay)
Fyrlr − Fyf lf +MA

]
. (2.21)

With the linear tire model from (2.13), it leads to[
mv2 0

0 I

] [
β̇
ω̇

]
+

[
mv2ω

0

]
=

[
v(−Cαf αf − Cαr αr +Ay)
Cαr αr lr − Cαf αf lf +MA

]
. (2.22)

Using (2.16) it yields the Riekert and Schunck’s equations, also mentioned in [Zom83],

mvβ̇ − (Cαf + Cαr)β +

(
mv − lfCαf − lrCαr

v

)
ω = Ay − Cαf δ (2.23)

Iω̇ − 1

v
(Cαr l

2
r + Cαf l

2
f )ω − (Cαf lf − Cαr lr)β = Ma − Cαf δ lf . (2.24)
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Condition Case Required Driver Intervention

|Cαr| lr > |Cαf | lf understeering increasing required

|Cαr| lr = |Cαf | lf neutral steering -

|Cαr| lr < |Cαf | lf oversteering decreasing required

Table 2.1: Cases of vehicle steer behavior

Remark 2.1. The sign of the cornering stiffness differs, since the SAE-terminology is used in this
work.

The derived equations can also be used to explain the oversteer and understeer phenomena. In
consideration of a steady-state cornering (β̇ = 0) and with the neglection of the aerodynamic
force (Ay = 0), the equation (2.23) can be rearranged to

δ =
lω

v

(
1 +

Cαf lf − Cαrlr
CαfCαrl2

mv2

)
, where {Cαf , Cαr} < 0. (2.25)

This means that the driver has to steer in relation to the velocity and the cornering stiffness of
the front and rear axle in order to follow a constant cornering path. The steering behavior can be
summarized with the cases specified in table 2.1.

2.1.3 Multiple Non-Steered Axles

Non-steered multiple-axle suspensions are typically used to sustain the weighty cargo, especially
within the scope of heavy vehicles. The two- and three-axle varieties are the most common types of
multiple-axle running gear for trucks or semitrailers. They are generally called tandem and tridem
suspensions, respectively. Non-steered multiple-axle suspensions not only increase tire wear partic-
ular during cornering maneuvers, but also influence the directional response with the development
of large tire slip angles [FW07].
Figure 2.7 (a) illustrates the bicycle model of a three-axle truck with the constant steer angle δ
at low-speed steady-state turning. It is assumed that the tires of the non steering rear axles have
the same cornering stiffness and that kinematic and compliant steering effects are ignored. The
geometric wheelbase lg is the distance between the tandem center and front axle. In contrast to
the two-axle vehicle of figure 2.5 (a), a truck tire can not operate with a zero slip angle, which
generates lateral forces in a low-speed turn. The lateral force balance requires that the lateral
tire force at the center axle is equal in magnitude to the sum of the front and rear lateral forces,
clarified in figure 2.7 (a). Since the cornering stiffness of the two rear axles are identical, the center
of the low-speed turn lies on a line perpendicular to the vehicle’s longitudinal axis, but differs to
the geometric center. As it is proposed in [FW07] an equivalent wheelbase leq can be calculated.
It characterizes the ideal cornering of an equivalent two-axle vehicle without slip. In particular,
figure 2.7 (b) illustrates that both vehicles have the same steer angle δ. If all non-steering axles of
the vehicle have the same cornering stiffness, the equivalent wheelbase of the correspond ing two
axle vehicle can be calculated with

leq = lg +
T

lg
+
T

lg

Cαr
Cαf

where T =

∑N
i=1 ∆2

i

N
. (2.26)

The sum of the cornering stiffness of all front and rear tires are denoted by Cαr and Cαf . Re-
spectively, N is the number of non-steering axles and ∆i is the distance of the i th non-steered
axle to the geometric center of the rear axle group. The detailed derivation of this equation was
documented by Winkler in [Win98] and will be explained for a three-axle truck in the following.
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lg
lg

leq

δ δ

Fyr2
Fyr1 Fyf

i.c.r. i.c.r.

T
lg

(a) three-axle truck with slip (b) equivalent, two-axle vehicle without slip

∆ ∆

Figure 2.7: Single-track-model of a three-axle truck in a steady-state, very low-speed turn.

Consider the three-axle vehicle illustrated in figure 2.8, which is in a steady-state turn at very low
velocity such that the centrifugal forces are neglect-able. The requirements of static equilibrium of
lateral forces and yaw moment lead to∑

Fy = 0 = −Fyf + Fyr1 − Fyr2 and (2.27)∑
Mr1 = 0 = −Fyf (lg −∆) + 2Fyr2∆, (2.28)

whereby ∆ is the distance from the axles to the geometric center of the group. The tire forces in
the direction of y are linear related to the slip angles αf , αr1 and αr2. Assuming small angles, it
yields

δ = tan

(
leq
R

)
≈ leq

R
(2.29)

δ − αf = tan

(
leq − a
R

)
≈ leq − a

R
⇒ αf ≈

a

R
(2.30)

αr1 = tan

(
∆ + b

R

)
≈ ∆ + b

R
(2.31)

αr2 = tan

(
∆− b
R

)
≈ ∆− b

R
. (2.32)

The geometric distances a, b and R are defined in figure 2.8. According to [Win98] it can be
assumed, that the complete front tire force Fyf acts in the direction of y. This leads to the result
that (2.27) and (2.28) end up in

−Cfαf + Cr1αr1 − Cr2αr2 = 0 and (2.33)

−Cfαf (lg −∆) + 2Cr2αr2∆ = 0, (2.34)

where Cf , Cr1 and Cr2 are the related cornering stiffnesses. Furthermore, the rear cornering stiffness
can be simplified to

Cr = Cr1 + Cr2 and Cr1 = Cr2. (2.35)
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δ
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∆∆

δ

δ − αf
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αr2

vr1

vr2

vf

αr2

αr1

αf

R

y
x

CfCr

Figure 2.8: Derivation of the equivalent wheelbase leq of a three-axle truck in a steady-state low-
speed turn.

Substituting equations (2.30)-(2.32) into equations (2.33)-(2.34) and the usage of (2.35) yields

−Cf
a

R
+ Cr

∆ + b

R
− Cr

∆− b
R

= 0 ⇒ Cfa = Crb and (2.36)

−Cf
a

R
(lg −∆) + 2Cr

∆− b
R

∆ = 0 ⇒ Cfa(lg −∆) = Cr(∆− b)∆. (2.37)

The factors a and b can be declared after some calculation with

a =
Cr
Cf

∆2

lg
and b =

∆2

lg
. (2.38)

In conclusion, the equivalent wheelbase can be evaluated with

leq = lg + b+ a = lg +
∆2

lg
+
Cr
Cf

∆2

lg
. (2.39)

This formula displays the same equation as mentioned in (2.26), if one regards the case of two rear
axles (N = 2). Eventually is should be noted, that the equivalent wheelbase can also be obtained
for trailers with multiple non-steering axles on a similar manner.

2.1.4 Trailer Combinations

Nowadays most trucks carry one or more trailers in order to improve cost effectiveness. At low speed
tractor-trailer combinations with non-steering rear axles offtrack to the inside during a turn. Simi-
larly, non-steering trailer axles offtrack relative to the path of their forward hitch point, see [FW07].
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Unit 1

Unit 2

l1

w2

l2

R1

R2

R3

w3

wi < li

l1

w3

(a) wheelbases are greater than hich distances (b) wheelbases are smaller than hich distances

off-tracking

Figure 2.9: Single-track-model of a three-axle truck in steady-state on a very low-speed turn.

So during a steady-state cornering of a vehicle combination of n-units the path radius of the nth

unit depends on the wheelbases {w1, w2..wn} and hitch distances {l1, ll...ln} of the units ahead.
In detail, figure 2.9 shows the geometric relation of a tractor with two trailers. This yields the
conditions

R2
1 + l21 = w2

2 +R2
2 ⇒ R2

2 = R2
1 + l21 − w2

2 and

R2
2 + l22 = w2

3 +R2
3 ⇒ R2

3 = R2
2 + l22 − w2

3,
(2.40)

whereby the radius of the last unit results in

R2
n = R2

1 +

n∑
i=2

l2i−1 − w2
i . (2.41)

According to the equation above and as shown in figure 2.9 (b), the trailers can even follow on
larger radius, if wi < li. Furthermore, the coordinates of the units’ center of gravity (c.g.) can be
calculated in agreement with figure 2.10 with

rn = r1 −
n∑
i=1

(bi + fi)

cosψi
sinψi

0

 , where f1 = 0 and bn = 0. (2.42)

The orientation angles are denoted by ψi and the distances between the c.g. and the front and the
rear hitch points are called fi and bi, respectively. Further details about the behavior of multiple-
articulated vehicles are described in [dB01].
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Figure 2.10: Body coordinates of a trailer combination train.

2.2 State of the Art: Steering of Semitrailer’s Rearmost
Axle

This section introduces steering strategies and control models, developed in the scope of previous
research projects ([Boe11], [vdV11], [Viv12]) at the Institute for Dynamic Systems and Control
(IDSC). This thesis focuses on the derived control methods, which are designed for an active
steering of the semitrailer’s rearmost axle, as shown in figure 1.2.

2.2.1 Horizontal Tracking Control Strategies

In literature ([Win98], [FW07], [ORJC10], [dB01], [FMG06]), most of the approaches intend to
reduce the off-tracking of trailers with respect to the tractor, as clarified in figure 2.9. Therefore
the mid point of the trailer-end should always follow the trajectory of the trailer’s front coupling
point by articulating the semitrailer actively.

Steady-State Control Strategies

Within the IDSC-research, first proposals for the control of the rearward steer angle called δ2
were suggested in [Boe11]. For the derivation of the strategy a steady-state cornering maneuver
of the TST shown in figure 2.11 was considered. According to this strategy, the steer angle of the
trailer results from the superposition of a simplified Ackermann-condition δ2r0, of one part for the
velocity compensation δ2rV , and finally the compensation of the yaw moment δ2rM , caused by the
non-steered axes. It can be written as

δ2r = δ2r0 + δ2rV + δ2rM , (2.43)

where the simplified Ackermann condition for the track-tracing of the coupling point, denoted

by jC , can be obtained by

δ2r0 = −
1− b5

b1 + b4

1 +
b5

b1 + b4

Γ. (2.44)

The geometrical parameters b1, b4, b5 and the hitch angle Γ, which describes the angle between the
tractor and semitrailer, are explained in figure 3.1.

Remark 2.2. This simplified equation is not explicitly mentioned in [Boe11], but was used in the
associated simulation models.
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Figure 2.11: Steady-state control strategy according to [vdV11].

The part of the velocity compensation in (2.43) results in

δ2rV = (m1 +m2)
b1(Cαf1 + Cαr1)− b4Cαr2

(b1 + b4)(Cαf1 + Cαr2)Cαr2
ay, (2.45)

whereby the centrifugal acceleration is characterized by ay. The mass of the tractor and trailer
are denoted with m1 and m2. The quantities Cαf1, Cαr1, Cαf2, Cαm2 and Cαr2 characterize the
cornering stiffness at the tractor’s front, rear and the trailer’s front, mid and rear axle. In [Boe11]
it is also proposed, that the compensation of the yaw moment can be determined with

δ2rM =
αm2Cαm2(b1 + b3) + αf2Cαf2(b1 + b2)

Cαr2(b1 + b4)
, (2.46)

whereby the slip angles can be approximated with

αf2 = −2(b1 + b2)− (b5 + b1 + b3 + l3 − l2)

b5 + b1 + b3 − (l3 − l2)
Γ and (2.47)

αm2 = −2(b1 + b3)− (b5 + b1 + b3 + l3 − l2)

b5 + b1 + b3 − (l3 − l2)
Γ. (2.48)

In the following this steady-state control strategies will be named as “feed-forward-controller”,
since they don’t compensate any measured error or feedback but just react proportional to the
hitch angle Γ.

Path-Following Control Strategies

Moreover, a linear quadratic regulator (LQR)-controller is designed in [vdV11] in order to minimize
the transient off-tracking for the three-axle trailer with a feedback control system.
Similarly, in [CC08] a virtual driver steering controller is proposed to control the steering angles of
trailer wheels, so as to make the trailer rear end follow the trajectory of 5th-wheel. The “virtual
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trailer-driver” is assumed to “sit” at the rear end of the semi-trailer and to use preview information
consisting of path-tracking deviations of the trailer body relative to the trajectory of 5th-wheel. The
“virtual driver” model for the trailer steering control is introduced to minimise the path-tracking
deviation of the trailer’s rear end by using a LQR-method. This linear quadratic regulator-approach
optimize a cost function which contains weighted input and output states. For the same purpose
a PID-Controller with a “reference trailer” is used in [ORJC10]. Thereby the controlled system is
investigated for low and high velocity.

At last, in the context of the IDSC-research project an additional thesis [Viv12] exists. It analyzes
how the usage of a steerable trailer axle can be beneficial during reversing maneuvers. In conclusion,
different feed-forward controllers, feedback controllers, observers and switching strategies particular
for the reverse driving problem are developed and tested. In the following this path-following control
strategies will be named as “feed-back-controller”, since they compensate a measured deviation,
which is returned by a feedback.

2.2.2 Rollover Prevention Control

Since a few years, researchers of different institutions are developing a variety of steering strategies
for the rollover avoidance of single-unit trucks or tractor-semitrailers. Usually the main challenge
is to influence and improve the roll dynamics of these vehicles using the tractor-front or / and a
semitrailer rear axle steering.

Roll-Controller for Single-Unit Trucks

In [AO98], [AO99] and [OBA99] control laws for an rollover avoidance of trucks are introduced.
Thereby a small auxiliary steering angle is set by an actuator, in addition to the driver’s steering
angle. The control law is based on proportional feedback of the roll rate and the roll acceleration,
so that the vehicle’s roll damping is robustly improved for a wide range of speed and height of the
center of gravity. Furthermore a rollover coefficient (or so-called load transfer ratio LTR) is defined
that basically depends on the lateral acceleration at the center of gravity of the vehicle’s sprung
mass. For critical values of this variable an emergency steering and braking system is activated.

Roll-Controller for Tractor-Semitrailer

In [KS88] it was found that the stability of tractor-semitrailer systems at high speeds can be
significantly improved by the usage of a LQR-controller acting on the tractor-front and trailer-rear
axle. Furthermore, some extended LQR-control strategies are designed and investigated, which
reduce the rollover occurrence [Sam00].

In order to minimise a combination of the path-tracking deviation of the trailer rear end relative to
the path of the hitch point (5th-wheel) and the lateral acceleration of trailer c.g. a LQR-controller
is introduced in [CC08]. Thereby the lateral acceleration of trailer c.g. is included as an additional
objective of the optimal controller in order to improve roll stability. In [ORJC10] this strategies
are extended and investigated for low and high velocities. Finally a similar approach which uses an
optimal controller is introduced and tested in [vdV11].

2.3 Basics of Applied Mechanics and System Dynamics

This section gives an overview of the basic model representations which are important in the scope
of this work. The theory and formulations are extracted from [PS10] and [Lun08].

Usually, the dynamics of a mechanical system can be described by ordinary differential equations.
They can be derived applying the principle laws of the physics and mechanics. In consideration
of a holonomic rigid MultiBody System (MBS), the motion behavior is completely described by
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f -generalized coordinates q, whereby f is the number number of degrees of freedom [PS10]. The
nonlinear equations of motion of an ordinary MBS can be read as

M(q, t) q̈ + k(q̇, q, t) = qe(q̇, q,u, t), (2.49)

where M is the f × f symmetric inertia matrix, k is a f × 1-vector of generalized gyroscopic forces
including the Coriolis and centrifugal forces as well as the gyroscopic torques, and the f×1-vector qe

represents generalized applied forces. Furthermore, equation (2.49) can be rearranged to

⇒ q̈ = M−1(qe − k) (2.50)

and consequently transformed into the nonlinear state-space representation

[
q̇

q̈

]
︸︷︷︸
ẋNonLin

=

[
q̇

M−1(qe − k)

]
︸ ︷︷ ︸
f (xNonLin,u,t)

, (2.51)

where xNonLin is called the state vector and u denominates the input vector of the nonlinear system.
In contrast, equation (2.49) can be linearized to

M̃(t) q̈lin + P̃ (t) q̇lin + Q̃(t) qlin = H̃(t)u, (2.52)

where M̃ is the symmetric, positive definite inertia matrix. The matrices P̃ and Q̃ characterize the
velocity and position dependent forces and the matrix H̃ applied by the input vector u represents
the external excitation. The super-scripted “∼” marks the linearity of the matrices. Moreover, this
linear representation can also be rearranged and transformed to a linear state-space representationq̇lin

q̈lin


︸ ︷︷ ︸
ẋ

=

 0 I

−M̃−1
Q̃ −M̃−1

P̃


︸ ︷︷ ︸

A

qlin

q̇lin


︸ ︷︷ ︸
x

+

 0

M̃
−1
H̃


︸ ︷︷ ︸

B

u, (2.53)

where x is the state vector of the linear model. According to [Lun08] the linear state-space repre-
sentation of a system with multiple inputs and multiple outputs (MiMo) generally results in

ẋ = Ax+Bu

y = Cx+Du,
(2.54)

where A is called the “system matrix”, B is named as “input matrix”, C is denoted as “output
matrix” and D is the“feedthrough matrix” according to the system theories.
In the case of a system with a single input and a single output (SISO) the linear state-space
representation can be simplified to

ẋ = Ax+ bu

y = cx+ du,
(2.55)

where b is a column vector and c is a row vector. The scalar feedthrough is named d. In order
to consider the system in the frequency domain, the transfer function can be calculated from the
SISO-state-space model (2.55) by

G(s) = cT (sI −A)−1b+ d. (2.56)



Chapter 3

Modelling

In order to simulate the behaviour of a tractor-semitrailer vehicle (TST) and develop control strate-
gies for various driving manoeuvres, mathematical models based on physical laws are required. The
dynamic motion of these models are characterized by the so-called equations of motions. This chap-
ter derives a nonlinear and linear horizontal planar model to describe the lateral and yaw motion
of the vehicle at low-speed. In addition, the derived models will be extended in order to take also
the roll motions of the system at high-speed into account. Thereby the TST is always considered
as a rigid Multibody System (MBS).

3.1 Nonlinear Single-Track Model

This section deals with the derivation of a nonlinear horizontal planar model according to the theory
of MBS [PS10]. In previous student theses [Boe11]&[Viv12] within the same research project at
the IDSC, the regarding nonlinear equations were derived on the one hand with the Newton-
Euler approach and on the other hand with the Lagrangian approach. This thesis presents the
detailed derivation of the nonlinear equations of motions according to the Newton-Euler approach
in subsection 3.1.1. In addition to this, the Lagrangian approach is represented in the subsection A.3
with the same result.

The assumptions and simplifications for the nonlinear model are:

• The tires on each axle are combined into one single tire, which is considered to be at the
center of the axle (single-track model).

• Only the lateral forces of the tires are taken into account: Ftire = Fy (There are no braking
or accelerating forces on the wheels.)

• The lateral tire behavior is considered fully-linear (or linear-saturated) to the related slip
angles: Fy ∝ α (and Fy ≤ Fy,max).

• An auxiliary force Faux is used in order to drive the vehicle at constant velocity. It is assumed
that this force is known, since it will later be realized with a subordinate control loop and it
is necessary for a later comparison of the different models.

• Pitch and bounce motions have small effects on the vehicle and therefore they are neglected.

• Crosswind and road camber effects are neglected.

• The coupling point (5th-wheel) is considered as a rigid connection and both vehicles as rigid
bodies.

19



20 3.1. Nonlinear Single-Track Model

ψ1

ψ2

l1

l3

b1 l2
b2

b3

b4

m2

m1

I1

I2

r2

r1

δ1

δ2

Fyf1

Fyr1

Fyr2

Fym2

Fyf2

Faux

x

y

OI

b5

E

C
Γ

Figure 3.1: Top view of the Single Track Model of a Tractor and Semitrailer(TST) with a steered
rearmost axle.

In the first step the planar motion of the TST in the inertial frame OI will be described. As shown

in figure 3.1, the distance from the tractor’s front wheel, 5th-wheel jC and rear wheel to the center
of gravity is denoted as l1, l2 and l3. The distance of the 5th-wheel, front wheel, middle wheel and
rear wheel of the trailer to it’s center of gravity is named as b1, b2, b3 and b4. The spacing between

the rear wheel and the end of the trailer jE is denoted by b5. The position of the centers of gravity
of the tractor and semitrailer are

r1 =

[
x2 + b1 cosψ2 + l2 cosψ1

y2 + b1 sinψ2 + l2 sinψ1

]
and r2 =

[
x2

y2

]
, (3.1)

where the coordinate tuples x2 and y2 define the position of the tractor. The yaw angle of the
semitrailer and tractor is called ψ2 and ψ1. The tractor has the mass m1, moment of inertia I1 and
steer angle δ1 at the front wheel. In analogy, the semitrailer has the mass m2, moment of inertia I2
and steer angle δ2 at the rearward wheel. The tire cornering forces Fyf1 and Fyr1 act at the front
and rear wheel of the tractor, whereby the forces Fyf2, Fym2 and Fyr1 appear at the position of
the front, middle and rear axle of the semitrailer.

3.1.1 Equations of motion according to the Newton-Euler Approach

In this section the nonlinear model is derived systematically with the Newton-Euler approach as
stated in [SW99]. The proposed method is structured in a certain way and the MBS will now be
considered as a three-dimensional system in order to explain the structure generally. Therefore the
position vectors to the centers of gravity will be redefined to

r1 =

x2 + b1 cosψ2 + l2 cosψ1

y2 + b1 sinψ2 + l2 sinψ1

0

 and r2 =

x2

y2

0

 . (3.2)
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With the generalized coordinates q =
[
x2 y2 ψ2 ψ1

]T
, the translational Jacobian matrices JT1

and JT2 for the tractor and semitrailer can be evaluated with

JT1 =
∂r1

∂q
=

1 0 −b1 sinψ2 −l2 sinψ1

0 1 b1 cosψ2 l2 cosψ1

0 0 0 0

 and JT2 =
∂r2

∂q
=

1 0 0 0
0 1 0 0
0 0 0 0

 . (3.3)

This leads to the conclusion that the velocity and acceleration of the kth body are

vk = JTkq̇ +
∂rk

∂t︸︷︷︸
v̄k

and ak = JTkq̈ + J̇Tkq̇ +
∂v̄k

∂t︸ ︷︷ ︸
āk

, (3.4)

whereby v̄k and āk are declared as the local velocity and local acceleration. Due to the fact that any
body rotation is not explicit time dependent, the vector of the corresponding angular velocity ωk
can be described by the rotational Jacobian matrix JRk and the time derivative of the generalized
coordinates,

ω1 =

 0
0

ψ̇1

 =

0 0 0 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

JR1

q̇ and ω2 =

 0
0

ψ̇2

 =

0 0 0 0
0 0 0 0
0 0 1 0


︸ ︷︷ ︸

JR2

q̇. (3.5)

As reported by [SW99], the equations of motions can be expressed in block matrices,
m1E sym.

0 m1E
0 0 I1

0 0 0 I2


︸ ︷︷ ︸

M̄


JT1

JT2

JR1

JR2


︸ ︷︷ ︸
J

q̈ +


m1ā1

m2ā2

I1ᾱ1 + ω̃1I1ω1

I2ᾱ2 + ω̃2I2ω2


︸ ︷︷ ︸

k̄

=


fe1
fe2
le1
le2


︸ ︷︷ ︸
q̄e

+


fr1
fr2
lr1
lr2


︸ ︷︷ ︸
q̄r

. (3.6)

Each line characterize the force balance in the direction of a Cartesian coordinate of one body. The
symmetrical matrix M̄ contains the mass and the inertia tensors

I1 =

Ixx1 Ixy1 Ixz1
Ixy1 Iyy1 Iyz1
Ixz1 Iyz1 I1

 and I2 =

Ixx2 Ixy2 Ixz2
Ixy2 Iyy2 Iyz2
Ixz2 Iyz2 I2

 . (3.7)

Besides the specified Jacobian matrices are composed to the global Jacobian matrix J . Further-
more k̄ denotes the vector of Coriolis and gyroscopic forces and torques, where āk and ᾱk denomi-
nate the local acceleration and local angular acceleration. The rotation of the bodies is not explicitly
time dependent and they spin around their mass centroid axis, so the terms Ikᾱk + ω̃kIkωk dis-
appear. The vector q̄e presents the applied forces and moments which results from the tires. In
addition q̄r contains the reaction forces and moments. The 12 equations stated in (3.6) can be
reduced to the minimal number of four ordinary differential equations by a left pre-multiplication
with the transposed global Jacobian matrix JT ,

JTM̄J︸ ︷︷ ︸
M

q̈ + JT k̄︸︷︷︸
k

= JT q̄e︸ ︷︷ ︸
qe

+

�
�

��JT Q̄g︸ ︷︷ ︸
qr

. (3.8)

With that step the reaction forces disappear because of the generalized orthogonality between
motion and constraint, i.e. vanishing virtual work of the reaction forces (JT Q̄ = 0) [PS10]. For
the current MBS the only challenge is to evaluate the local accelerations

ā1 =

−l2cψ1ψ̇
2
1 − b1cψ2 ψ̇

2
2

−l2sψ1ψ̇
2
1 − b1sψ2

ψ̇2
2

0

 and ā2 =

0
0
0

 (3.9)
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and take the applied forces of the tires acting on the centers of gravity into account. They can be
expressed in Cartesian coordinates with

q̄e =



Fyf1sψ1+δ1 + Fyr1sψ1
+ Fauxcψ1

−Fyf1cψ1+δ1 − Fyr1cψ1 + Fauxsψ1

0
Fyf2sψ2

+ Fym2sψ2
+ Fyr2sψ2+δ2

−Fyf2cψ2
− Fym2cψ2

− Fyr2cψ2+δ2

0
0
0

−Fyf1l1cδ1 + Fyr1l3
0
0

Fyf2b2 + Fym2b3 + Fyr2b4cδ2



. (3.10)

The trigonometric functions are notated according to (A.1). In conclusion, after some calculation
the equations of motion in matrix-form and conform to (2.49) results in
m1 +m2 0 −m1b1sψ2

−m1l2sψ1

0 m1 +m2 m1b1cψ2 m1l2cψ1

−m1b1sψ2 m1b1cψ2 m1b
2
1 + I2 m1l2b1cψ1−ψ2

−m1l2sψ1
m1l2cψ1

m1l2b1cψ1−ψ2
m1l

2
2 + I1

 q̈ +


−m1l2cψ1

ψ̇2
1 −m1b1cψ2

ψ̇2
2

−m1l2sψ1 ψ̇
2
1 −m1b1sψ2 ψ̇

2
2

−m1ψ̇
2
1l2b1sψ1−ψ2

m1ψ̇
2
2l2b1sψ1−ψ2

 ...

=


Fyf1sδ1+ψ1 + Fyr2sδ2+ψ2 + Fyf2sψ2 + Fym2sψ2 + Fyr1sψ1 + Fauxcψ1

−Fyf1cδ1+ψ1 − Fyr2cδ2+ψ2 − Fyf2cψ2 − Fym2cψ2 − Fyr1cψ1 + Fauxsψ1

Fyf2b2 + Fym2b3 − Fyr1b1cψ1−ψ2
− Fyf1b1cδ1+ψ1−ψ2

+ Fyr2b4cδ2 + Fauxb1sψ1−ψ2

Fyr1(l3 − l2)− Fyf1cδ1(l1 + l2)

 .

(3.11)

In comparison with (A.24), these derived equations of motions are identical.

3.1.2 Transformation to trailer-fixed reference frame

Up to this point, a full non-linear model for the planar motion in the inertial frame is derived.
Nevertheless, for the purpose of creating a controller, it is necessary to have all the equations
expressed in a frame fixed to one of the two truck units. Since this work mainly focus on the
semitrailer, a trailer-fixed reference frame is used. The new vector of generalized coordinates is

S
q =

[
S
x2 S

y2 ψ2 ψ1

]T
, (3.12)

where
S
x2 and

S
y2 denotes the trailer position with respect to the semitrailer coordinate system OS ,

which is fixed to its center of gravity. Figure 3.2 shows the model description at two points of
time (t(k) and t(k+1)) during a simulation process. Consequently the position of the semitrailer
with respect to the initial frame OI at t(k+1) can be expressed by

r
(k+1)
2 =

[
x2

y2

]
= r

(k)
2 +

[
cosψ

(k)
2 − sinψ

(k)
2

sinψ
(k)
2 cosψ

(k)
2

]
︸ ︷︷ ︸

IφSψ
(k)
2

[
S
∆x2

S
∆y2

]
︸ ︷︷ ︸
S

∆r2

, (3.13)

where r
(k)
2 is the previous position at t(k) and IφS the rotational matrix of the semitrailer. More-

over
S
∆r2 is the relative displacement after the time-step ∆t. With the velocity

S
ṙ2 =

[
S
ẋ2 S

ẏ2

]T
it yields

S
∆r2 =

S
ṙ2 ∆t. (3.14)
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(k+1)
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(k+1)
1

ψ
(k+1)
1

ψ
(k+1)
2
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Timepoint: t(k+1) = t(k) + ∆t

S
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Γ = hitch angle

S
∆r2,

S
ṙ2

Figure 3.2: Coordinate transformation of the TST-Single Track Model.

Since the
S
∆r2 and

S
ṙ2 have the same direction, the velocity with respect to OI and OS are also

related to the rotational matrix of the semitrailer IφS ,

[
ẋ2

ẏ2

]
︸︷︷ ︸
v2

=

[
cosψ2 − sinψ2

sinψ2 cosψ2

]
︸ ︷︷ ︸

IφS(ψ2)

[
S
ẋ2

S
ẏ2

]
︸ ︷︷ ︸
S
v2

. (3.15)

When considering the angle velocities it is obvious, that they are independent of the reference
frame (ψ̇1 =

S
ψ̇1 and ψ̇2 =

S
ψ̇2). This leads to the transformation matrix IΦS , which describes

the relation between the previous and current generalized velocities,


ẋ2

ẏ2

ψ̇2

ψ̇1


︸ ︷︷ ︸
q̇

=


cosψ2 − sinψ2 0 0
sinψ2 cosψ2 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

IΦS


S
ẋ2

S
ẏ2

ψ̇2

ψ̇1


︸ ︷︷ ︸
S
q̇

. (3.16)

Furthermore it yields SΦI = IΦS
−1 = IΦS

T , since the linear transformation IΦS is orthogonal.
Applying (3.16) to (3.8) it is possible to obtain the equations of motion expressed in the trailer-fixed
reference frame in matrix form,

SΦIM IΦS︸ ︷︷ ︸
SM

S
q̈ + SΦIM IΦ̇S S

q̇ + SΦI k︸ ︷︷ ︸
Sk

= SΦI q
e︸ ︷︷ ︸

S
qe

. (3.17)
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After some calculations the equations of motions with reference to the trailer-fixed frame results in
m1 +m2 0 0 −m1l2sΓ

0 m1 +m2 m1b1 m1l2cΓ

0 m1b1 m1b
2
1 + I2 m1l2b1cΓ

−m1l2sΓ m1l2cΓ m1l2b1cΓ m1l
2
2 + I1

S q̈ +


−m1ψ̇

2
2b1 −m1ψ̇

2
1l2cΓ−(m1+m2)ψ̇2 S ẏ2

−m1ψ̇
2
1l2sΓ + ψ̇2 (m1 +m2)S ẋ2

m1b1(ψ̇2 S ẋ2 − ψ̇2
1l2sΓ)

m1ψ̇2l2(S ẋ2 cΓ + (S ẏ2 + ψ̇2b1)sΓ)

 ...

=


Fyf1sδ1+Γ + Fyr2sδ2 + FauxcΓ + Fyr1sΓ

FauxsΓ − Fyf2 − Fym2 − Fyf1cδ1+Γ − Fyr2cδ2 − Fyr1cΓ

Fyf2b2 + Fym2b3 − Fyr1b1cΓ + Fauxb1sΓ − Fyf1b1cδ1+Γ + Fyr2b4cδ2
Fyr1(l3 − l2) − Fyf1cδ1(l1 + l2)

 , where

(3.18)

Γ = ψ1 − ψ2 (3.19)

denotes the hitch angle and the trigonometric functions are notated in agreement with (A.1).

3.2 Model Extensions and Background Analysis

3.2.1 Trajectories with respect to the Initial Reference Frame

The model equations according to (3.18) are formulated with respect to the semitrailer-fixed refer-
ence frame OS . In order to identify the positions of the semitrailer and tractor units, the trajectories
in the inertial reference frame OI must be obtained by the generalized coordinates of the simulation
results. Additionally, the following back transformation method is also needed for the determination
of the tire forces, at each simulation time-step.
Given are the generalized positions in line with (3.12)and along a simulated time line {t(1)...t(k)...t(n)},

S
qresult =


S
x

(1)
2 S

x
(2)
2 ...

S
x

(k)
2 S

x
(k+1)
2 ...

S
x

(n)
2

S
y

(1)
2 S

y
(2)
2 ...

S
y

(k)
2 S

y
(k+1)
2 ...

S
y

(n)
2

ψ
(1)
2 ψ

(2)
2 ... ψ

(k)
2 ψ

(k+1)
2 ... ψ

(n)
2

ψ
(1)
1 ψ

(2)
1 ... ψ

(k)
1 ψ

(k+1)
1 ... ψ

(n)
1

 . (3.20)

The kth displacement vector of the semitrailer unit relative to OS can be evaluated by

S
∆r

(k)
2 =

[
S
x

(k+1)
2 −

S
x

(k)
2

S
y

(k+1)
2 −

S
y

(k)
2

]
, for k = 1(1)n− 1. (3.21)

In consideration of the initial condition r02 and (3.13), the trailer position with respect to the initial
reference frame can be calculated,

r
(k)
2 =

{
r02 for k = 1

r
(k−1)
2 + IφS(ψ

(k−1)
2 )

S
∆r

(k−1)
2 for k = 2(1)n,

(3.22)

where IφS(ψ
(k−1)
2 ) denotes the rotation matrix of the semitrailer with the applied angle ψ

(k−1)
2 .

Figure 3.2 clarifies the relations again. The trailer position can be alternatively obtained by trans-
forming the relative trailer velocity

S
v2 to the velocity in the initial reference frame v2 using

equation (3.15) and applying an integration in the form of

r2 =

∫
v2 dt, (3.23)

or for discrete values:

r
(k)
2 =

{
r02 for k = 1

r
(k−1)
2 + v

(k−1)
2 ∆t(k−1) for k = 2(1)n.

(3.24)
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This thesis also treats a linear model with the generalized coordinates

qlin =
[
Γ ψ̇1 β2 ψ̇2

]T
. (3.25)

Since this model assumes a constant body velocity v, the semitrailer velocity in the initial reference
frame results in

v2 =

[
ẋ2

ẏ2

]
=

[
v cos(β2 + ψ2)
v sin(β2 + ψ2)

]
. (3.26)

The semitrailer position can be calculated afterwards, using equation (3.23), for discrete val-
ues (3.24) respectively.
In conclusion, the trajectory of the tractor’s c.g. can be obtained by (3.1), in detail it results

r
(k)
1 = r

(k)
2 +

[
b1 cosψ

(k)
2 + l2 cosψ

(k)
1

b1 sinψ
(k)
2 + l2 sinψ

(k)
1

]
, for k = 1(1)n. (3.27)

3.2.2 Tire Forces and Kinematic Constraints

In order to determine the tire forces during the simulation process, some kinematic relations have
to be taken into account. As already discussed in section 2.1.1, the tire forces Fαi of the modeled
TST linearly depend on the corresponding slip angles αi,

Fyf1 = Cαf1 αf1 Fyr1 = Cαr1 αr1 (3.28)

Fyf2 = Cαf2 αf2 Fym2 = Cαm2 αm2 Fyr2 = Cαr2 αr2 (3.29)

for the tractor and for the semitrailer, where Cαi is the cornering stiffness for the single axles.

Remark 3.1. The tire forces can be either regarded fully linear as stated in (2.5) or saturated
according to (2.6). This distinction is especially important for the derivative of the linear model
reported by section 3.3. Conveniently, it will treated as fully linear during this section.

In analogy to (2.16), the resulting slip angles are

αf1 = δ1 −
ψ̇1l1
|
T
v1|
− β1 αr1 =

ψ̇1l3
|
T
v1|
− β1 (3.30)

αf2 =
ψ̇2b2
|
S
v2|
− β2 αm2 =

ψ̇2b3
|
S
v2|
− β2 αr2 = δ2 +

ψ̇2b4
|
S
v2|
− β2, (3.31)

where the constant distances are depicted in figure 3.1,
T
v1 = [

T
ẋ1 T

ẏ1]T and
S
v2 = [

S
ẋ2 S

ẏ2]T

are the body velocities and β1 (]
T
ẋ1, T ẏ1) and β2 (]

S
ẋ2, S ẏ2) are the body slip angles. Since

S
ẋ2

and
S
ẏ2 are generalized coordinates, the vector norm and body slip angle of the semitrailer are also

known as

|
S
v2| =

√
S
ẋ2

2 +
S
ẏ2

2 (= v2) and β2 = arctan

(
S
ẏ2

S
ẋ2

)
. (3.32)

Before the calculation of the tractor’s body slip angle it is necessary to obtain the tractor velocity v1

represented in the initial reference frame. This can be done with the derivative of (3.27) with respect
to the time,

ṙ1︸︷︷︸
v1

= ṙ2︸︷︷︸
v2

+

[
−ψ̇2b1 sinψ2 − ψ̇1l2 sinψ1

ψ̇2b1 cosψ2 + ψ̇l2 cosψ1

]
︸ ︷︷ ︸

vψ

, (3.33)
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Figure 3.3: Calculation of the body velocities in order to obtain the body slip angels β1 and β2.

where v2 yields from (3.15). The velocity vψ results from the angular velocities and is depicted
in figure 3.3. On the left site (a) it qualitatively shows the relative movement of the tractor in
agreement with the hitch kinematic, where the right site (b) illustrates the rotational motion of the
entire tractor semitrailer system with respect to the trailer’s center of gravity. Now the velocity
with respect to the tractor reference frame (denoted with OT ) can be solved by using the transposed
transformation matrix TφI(ψ1) = (IφT (ψ1))T ,[

T
ẋ1

T
ẏ1

]
︸ ︷︷ ︸
T
v1

=

[
cosψ1 sinψ1

− sinψ1 cosψ1

]
︸ ︷︷ ︸

TφI(ψ1)

[
ẋ1

ẏ1

]
︸︷︷ ︸
v1

. (3.34)

The vector norm and body slip angle of the tractor eventually leads to

|
T
v1| =

√
T
ẋ1

2 +
T
ẏ1

2 (= v1) and β1 = arctan

(
T
ẏ1

T
ẋ1

)
, (3.35)

whereby all the tire slip angles and tire forces are determined. The scalar velocities of the bodies
are denoted by v1 and v2.
Corresponding to figure 3.3, the coupling conditions will be introduced within this section. Since
the semitrailer is coupled to the tractor, the orientation ψc of the velocity vc at the coupling point
(or so-called “hitch-point” or “5th-wheel”) can be described as illustrated in figure 3.4 by both, the
tractor’s and the trailer’s body coordinates,

ψc ≈ ψ1 + β1 − tan
ψ̇1l2
v1

and ψc ≈ ψ2 + β2 + tan
ψ̇2b1
v2

. (3.36)
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Figure 3.4: Top view of the hitch kinematic for the derivation of the coupling condition.

With the simplification tan] ≈ ] and the elimination of the angle ψc, the kinematic constraint
equation results equal to [SC98] with

ψ1 + β1 −
ψ̇1l2
v1
≈ ψ2 + β2 +

ψ̇2b1
v2

⇔ β1 ≈ −Γ + β2 +
ψ̇2b1
v2

+
ψ̇1l2
v1

, (3.37)

where Γ is defined in (3.19). The derivation with respect to the time and assuming v̇1 = 0 and v̇2 =
0, yields

ψ̇1 + β̇1 −
ψ̈1l2
v1
≈ ψ̇2 + β̇2 +

ψ̈2b1
v2

⇔ β̇1 ≈ ψ̇2 − ψ̇1 + β̇2 +
ψ̈2b1
v2

+
ψ̈1l2
v1

. (3.38)

If the roll motion of the tractor semitrailer should also be taken into account, the model can be
extend to a so-called “yaw-roll”-model. The 3D-position of the 5th-wheel can be described with
either

rc1 =

x1 − l2 cosψ1 + z1 sinφ1 sinψ1

y1 − l2 sinψ1 − z1 sinφ1 cosψ1

z1 cosφ1

 or rc2 =

x2 + b1 cosψ2 + z2 sinφ2 sinψ2

y2 + b1 sinψ2 − z2 sinφ2 cosψ2

z2 cosφ2

 , (3.39)

whereby φ1 and φ2 are the roll angle of the tractor and semitrailer. The distances from the roll
axis to the 5th-wheel is denoted by z1 and z2, respectively. Furthermore, it is assumed that the
position of the tractor’s c.g. is given with x1 and y1. The derivative with respect to the time leads
to the velocities

vc1 =

ẋ1 + ψ̇1l2 sinψ1 + φ̇1z1 cosφ1 sinψ1 + ψ1z1 sinφ1 cosψ1

ẏ1 − ψ̇1l2 cosψ1 − φ̇1z1 cosφ1 cosψ1 + ψ̇1z1 sinφ1 sinψ1

−φ̇1z1 sinφ1

 and (3.40)

vc2 =

ẋ2 − ψ̇2b1 sinψ2 + φ̇2z2 cosφ2 sinψ2 + ψ2z2 sinφ2 cosψ2

ẏ2 + ψ̇2b1 cosψ2 − φ̇2z2 cosφ2 cosψ2 + ψ̇2z2 sinφ2 sinψ2

−φ̇2z2 sinφ2

 . (3.41)

The velocity components of the c.g.’s of the tractor and semitrailer can also be written as

ẋ1 = v1 cos(ψ1 + β1) ẏ1 = v1 sin(ψ1 + β1) , and (3.42)

ẋ2 = v2 cos(ψ2 + β2) ẏ2 = v2 sin(ψ2 + β2). (3.43)
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Figure 3.5: 3D view of the hitch kinematic for the derivation of the coupling condition for a yaw-roll
model.

Moreover, the velocities can be represented in the body-fixed reference frames (rotation with ψ1

or ψ2 around the z-axis), which leads to

T
vc1 = TφI vc1 =

 v1 cosβ1 + ψ̇1z1 sinφ1

v1 sinβ1 − ψ̇1l2 − φ̇1z1 cosφ1

−φ̇1z1 sinφ1

 and (3.44)

S
vc2 = SφI vc2 =

 v2 cosβ2 + ψ̇2z2 sinφ2

v2 sinβ2 + ψ̇2b1 − φ̇2z2 cosφ2

−φ̇2z2 sinφ2

 . (3.45)

For the consideration of small angles (ψ1, ψ2, φ1, φ2 << 1) the lateral velocities results in

T
vc1y = v1β1 − ψ̇1l2 − φ̇1z1 and

S
vc2y = v2β2 + ψ̇2b1 − φ̇2z2, (3.46)

This relations are clarified in figure 3.5 for the kinematic of the tractor in fig. 3.5(b) and the
semitrailer in fig. 3.5(a). The orientation of the velocities with respect to the body-fixed reference
frames and around the z-axis can be approximated with

T
ψc1 = β1 −

ψ̇1l2
v1
− φ̇1z1

v1
and

S
ψc2 = β2 +

ψ̇2b1
v2
− φ̇2z2

v2
. (3.47)

The representation with respect to the initial reference frame can be read as

ψc1 = ψ1 + β1 −
ψ̇1l2
v1
− φ̇1z1

v1
and ψc2 = ψ2 + β2 +

ψ̇2b1
v2
− φ̇2z2

v2
. (3.48)

Since the both hitch description have the same velocity orientation (ψc1
!
= ψc1), the kinematic

constraint equation (also called algebraic loop) yields

ψ1 − ψ2 + β1 − β2 −
l2
v1
ψ̇1 −

b1
v2
ψ̇2 −

z1

v1
φ̇1 +

z2

v2
φ̇2 = 0. (3.49)
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In conclusion, the derivation with respect to the time and assuming v̇1 = 0 and v̇2 = 0, results in

ψ̇1 − ψ̇2 + β̇1 − β̇2 −
l2
v1
ψ̈1 −

b1
v2
ψ̈2 −

z1

v1
φ̈1 +

z2

v2
φ̈2 = 0. (3.50)

This constrain equation is also used in e.g. [SC98], [CC08] or [vdV11].

3.3 Linear Single-Track Model

In order to reduce the simulation cost, to develop linear controllers and to use the methods of the
linear system theory, a linear model of the TST will be derived by the nonlinear equations within
this section. On the one hand subsection 3.3.1 establishes fully linear equations of motion and on
the other hand subsection 3.3.2 introduce a linear model with the saturated tire-force-model. An
alternative derivation of the fully linear system is described in section A.5.
Assuming the angle between the tractor and semitrailer is very small Γ << 1, it yields

sin(Γ) ≈ Γ and cos(Γ) ≈ 1, (3.51)

it can also be simplified for small steering angles,

sin(δ1) ≈ δ1 and cos(δ1) ≈ 1, (3.52)

sin(δ2) ≈ δ2 and cos(δ2) ≈ 1. (3.53)

The addition theorems can be used in order to linearize the trigonometric functions,

sin(δ1 + Γ) ≈ δ1 + Γ and cos(δ1 + Γ) ≈ 1− Γδ1. (3.54)

With these approximations and neglecting the quadratic terms (ψ̇2
2 = 0, ψ̇2

1 = 0), the nonlinear
system of equations (3.18) yields

m1 +m2 0 0 0
0 m1 +m2 m1b1 l2m1

0 m1b1 m1b
2
1 + I2 l2b1m1

0 m1l2 m1l2b1 m1l
2
2 + I1



S ẍ2

S ÿ2

ψ̈2

ψ̈1

 +


−(m1 +m2)ψ̇2 S ẏ2

(m1 +m2)ψ̇2 S ẋ2

m1b1ψ̇2 S ẋ2

m1ψ̇2l2(S ẋ2 + (S ẏ2 + ψ̇2b1) Γ)

 ...

=


Fyf1(δ1 + Γ) + Fyr2 δ2 + Faux + Fyr1Γ

FauxΓ − Fyf2 − Fym2 − Fyf1(1 − Γδ1) − Fyr2 − Fyr1
Fyf2b2 + Fym2b3 − Fyr1b1 + Fauxb1Γ − Fyf1b1(1 − Γδ1) + Fyr2b4

Fyr1(l3 − l2) − Fyf1(l1 + l2)

 .

(3.55)

From (A.35), the movement can approximately be expressed with the resulted body velocity v2 and
the body slip angle of semitrailer β2,

S
ẋ2 ≈ v2 and

S
ẏ2 ≈ v2β2, (3.56)

S
ẍ2 ≈ v̇2 and

S
ÿ2 ≈ v̇2β2 + v2β̇2. (3.57)

In the following it will be assumed, that the tractor and semitrailer approximately moves with the
same constant velocity called v, so it yields v1 = v2 = v and v̇ = 0. As a consequence, the auxiliary
force Faux will become a reaction force and it disappears (for more details go to section 3.1).
Furthermore, the product of small angles and angle velocities can be neglected (Γδ1 = β2Γ =
ψ̇2Γ = 0). So the equation (3.55) simplifies to

−(m1 +m2)ψ̇2 vβ2

(m1 +m2)v(β̇2 + ψ̇2) +m1b1ψ̈2 +m1l2ψ̈1

b1m1v(β̇2 + ψ̇2) + (m1b
2
1 + I2)ψ̈2 +m1l2b1ψ̈1

m1l2v(β̇2 + ψ̇2) +m1l2b1ψ̈2 + (m1l
2
2 + I1)ψ̈1

=


Fyf1(δ1 + Γ) + Fyr2 δ2 + Fyr1Γ
−Fyf2 − Fym2 − Fyf1 − Fyr2 − Fyr1

Fyf2b2+Fym2b3+Fyr2b4−(Fyr1+Fyf1)b1
Fyr1(l3 − l2)− Fyf1(l1 + l2)

. .(3.58)

In conclusion, the assumptions and simplifications for the linear model can be summarized by:
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• The tires on each axle are combined into one single tire, which is considered to be at the
center of the axle (single-track model).

• Only the lateral forces of the tires are taken into account: Ftire = Fy. (There are no braking
or accelerating forces on the wheels.)

• The angle between the tractor and semitrailer is very small: Γ << 1.

• The steer angles of the tractor and semitrailer are very small: δ1 << 1 and δ2 << 1.

• The velocity of each unit is constant: v1 = v2 = v and v̇ = 0.

• The yaw rates are small: ψ̇1 << 1 and ψ̇2 << 1.

• Pitch and bounce motions have small effects on the vehicle and are therefore neglected.

• Crosswind and road camber effects are neglected.

• The coupling point (5th-wheel) is considered as a rigid connection without compliance.

3.3.1 Fully Linear Equations of Motions

In the following, a fully linear model will be derived by using the additional assumption:

• The lateral tires behavior is considered fully-linear to the related slip angles: Fy ∝ α.

Since the first equation of (3.58) is of little importance, it can be neglected. The tire forces can
be substituted with (3.28) and (3.29), where the slip angles αi at the tires are explicitly defined
in (3.30). Moreover, using the kinematic constraint equation (3.37) for the elimination of β1, the
remaining equations of motion results for the second row in

m1l2ψ̈1 + (m1 +m2)vβ̇2 +m1b1ψ̈2 + (Cαf1 + Cαr1)Γ ...

+

(
Cαr1

l3 − l2
v
− Cαf1

l1 + l2
v

)
ψ̇1 − (Cαf2 + Cαm2 + Cαr2 + Cαf1 + Cαr1)β2...

+

(
(m1 +m2)v + Cαf2

b2
v

+ Cαm2
b3
v

+ Cαr2
b4
v
− (Cαf1 + Cαr1)

b1
v

)
ψ̇2 = ...

−Cαf1δ1 − Cαr2δ2,

(3.59)

the third row it leads to

m1l2b1ψ̈1 +m1b1vβ̇2 + (m1b
2
1 + I2)ψ̈2 + (Cαr1 + Cαf1)b1Γ ...

+

(
Cαr1b1

l3 − l2
v
− Cαf1b1

l1 + l2
v

)
ψ̇1 + (Cαf2b2 + Cαm2b3 + Cαr2b4 − Cαr1b1 − Cαf1b1)β2...

+

(
m1vb1 − Cαf2

b22
v
− Cαm2

b23
v
− Cαr2

b24
v
− Cαr1

b21
v
− Cαf1

b21
v

)
ψ̇2 = ...

−Cαf1b1δ1 + Cαr2b4δ2

(3.60)

and the fourth row can be formulated as

(m1l
2
2 + I1)ψ̈1 +m1l2vβ̇2 +m1l2b1ψ̈2 + (Cαf1(l1 + l2)− Cαr1(l3 − l2))Γ ...

+

(
−Cαr1

(l3 − l2)2

v
− Cαf1

(l1 + l2)2

v

)
ψ̇1 + (Cαr1(l3 − l2)− Cαf1(l1 + l2))β2...

+

(
m1l2v + Cαr1b1

l3 − l2
v
− Cαf1b1

l1 + l2
v

)
ψ̇2 = ...

−Cαf1(l1 + l2)δ1.

(3.61)
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Additionally, the derivation of (3.19) with respect to the time leads to

Γ̇ = ψ̇1 − ψ̇2. (3.62)

In analogy to (2.53) and with the new state vector

qlin =
[
Γ ψ̇1 β2 ψ̇2

]T
(3.63)

and the input vector

u =
[
δ1 δ2

]T
(3.64)

the equations (3.59)-(3.62) can be also written as a linear system
0 m1l2 (m1 +m2)v m1b1
0 m1l2b1 m1b1v m1b

2
1 + I2

0 m1l
2
2 + I1 m1l2v m1l2b1

1 0 0 0

 q̇lin + ...


Yβ1

−Yψ̇1
− Yβ1

l2
v −Yβ2 − Yβ1 (m1 +m2)v − Yψ̇2

−Yβ1

b1
v

Yβ1b1 −(Yψ̇1
+ Yβ1

l2
v )b1 −Nβ2 − Yβ1b1 m1vb1 −Nψ2 − Yβ1

b21
v

Nβ1+Yβ1 l2 −Nψ1−Yψ̇1
l2−Yβ1

l22
v −Nβ1

l2
v −Nβ1 − Yβ1 l2 m1l2v − (Nβ1 + Yβ1 l2) b1v

0 −1 0 1

qlin

... =


Yδ1 Yδ2
Yδ1b1 Nδ2

Nδ1 + Yδ1 l2 0
0 0

u,

(3.65)

where the terms

Yβ1 = Cf1 + Cr1 Yψ̇1
= Cf1

l1
v
− Cr1

l3
v

Yδ1 = −Cf1 (3.66)

Nβ1
= Cf1l1 − Cr1l3 Nψ̇1

= Cf1
l21
v

+ Cr1
l23
v

Nδ1 = −Cf1l1 (3.67)

Yβ2
= Cf2 + Cm2 + Cr2 Yψ̇2

= −Cf2
b2
v
− Cm2

b3
v
− Cr2

b4
v

Yδ2 = −Cr2 (3.68)

Nβ2 = −Cf2b2 − Cm2b3 − Cr2b4 Nψ̇2
= Cf2

b22
v

+ Cm2
b23
v

+ Cr2
b24
v

Nδ2 = Cr2b4 (3.69)

also describe the partial derivatives of the lateral tire forces and tire yaw moments [Seg57],[Sam00].
The linear system of equations (3.65) can be abbreviated with

P̃ q̇lin + Q̃ qlin = H̃u, (3.70)

where the super-scripted “∼” marks the linearity of the matrices. It can be rearranged in state
space representation,

⇒ q̇lin = P̃
−1

(−Q̃)︸ ︷︷ ︸
A

qlin + P̃
−1
H̃︸ ︷︷ ︸

B

u, (3.71)

where A is called the “system matrix” and B is named as “input matrix” according to the system
theories.
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3.3.2 Linear Equations of Motion with saturated Tire Forces

In contrast to section 3.3.1, the following assumption yields:

• The lateral tires behavior is considered linear-saturated to the related slip angles: Fy ∝ α
and Fy ≤ Fy,max.

This means, that a simplified and linear model is demanded, but the lateral tire forces must be
restrictable to certain maximum and minimum values. This can be accomplished regarding the
second, third and fourth equation of (3.58) and using (3.62). With the state vector

qlin,F =
[
Γ ψ̇1 β2 ψ̇2

]T
(3.72)

and the vector of the saturated input forces stated in (2.6) and (3.28)-(3.31),

uF =
[
Fyf1,sat Fyr1,sat Fyf2,sat Fym2,sat Fyr2,sat

]T
, (3.73)

the model equation results in
0 m1l2 (m1 +m2)v m1b1
0 m1l2b1 m1b1v m1b

2
1 + I2

0 m1l
2
2 + I1 m1l2v m1l2b1

1 0 0 0


︸ ︷︷ ︸

˜P F

q̇lin,F +


0 0 0 (m1 +m2)v1

0 0 0 m1v1b1
0 0 0 m1v1l2
0 −1 0 1


︸ ︷︷ ︸

˜QF

qlin,F ...

=


−1 −1 −1 −1 −1
−b1 −b1 b2 b3 b4

−(l1 + l2) (l3 − l2) 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

˜HF

uF .

(3.74)

This can also be rearranged in state space representation,

⇒ q̇lin,F = P̃
−1

F (−Q̃F )︸ ︷︷ ︸
AF

qlin,F + P̃
−1

F H̃F︸ ︷︷ ︸
BF

uF . (3.75)

Remark 3.2. This model description requires to pre-calculate the tire forces from the current steer
angles and generalized coordinates indeed, but also allows to use other tire models.

3.4 Roll-extended Single-Track Models

In order to improve the active safety of semitrailers with a steered rearmost axle, the roll stability
has to be investigated. Therefore a nonlinear and linear model will be derived within this section.

3.4.1 Nonlinear Lateral-Yaw-Roll Model

The equations of motion for a precise single-track model of the tractor-semitrailer will be derived
in the following, using the Newton-Euler approach from section 3.1. This model is intended for the
validation of the linear roll-extended model, which will be introduced later in section 3.4.2.

According to figure 3.6 the position of the centers of gravity of the tractor and semitrailer can be
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Figure 3.6: Roll-extended single track model of the TST with a steered rearmost axle

expressed by

r1 =

x2 + b1 cosψ2 + l2 cosψ1 + h1 sinφ1 sinψ1

y2 + b1 sinψ2 + l2 sinψ1 − h1 sinφ1 cosψ1

h1 cosφ1

 and (3.76)

r2 =

x2 + h2 sinφ2 sinψ2

y2 − h2 sinφ2 cosψ2

h2 cosφ2

 . (3.77)

With the generalized coordinates qr =
[
x2 y2 ψ2 ψ1 φ2 φ1

]T
, the translational Jacobian

matrices JTr1 and JTr2 for the tractor and semitrailer can be evaluated with

JTr1 =
∂r1

∂qr
=

1 0 −b1 sinψ2 h1 cosψ1 sinφ1 − l2 sinψ1 0 h1 cosφ1 sinψ1

0 1 b1 cosψ2 h1 sinφ1 sinψ1 + l2 cosψ1 0 −h1 cosφ1 cosψ1

0 0 0 0 0 −h1 sinφ1

 , (3.78)

JTr2 =
∂r2

∂qr
=

1 0 h2 cosψ2 sinφ2 0 h2 cosφ2 sinψ2 0
0 1 h2 sinφ2 sinψ2 0 −h2 cosφ2 cosψ2 0
0 0 0 0 −h2 sinφ2 0

 . (3.79)
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The local accelerations results from (3.4) with

ār1 =

2φ̇1ψ̇1h1 cosφ1 cosψ1 − ψ̇2
1(l2 cosψ1 + h1 sinφ1 sinψ1)− ψ̇2

2b1 cosψ2 − φ̇2
1h1 sinφ1 sinψ1

2φ̇1ψ̇1h1 cosφ1 sinψ1 − ψ̇2
1(l2 sinψ1 − h1 cosψ1 sinφ1)− ψ̇2

2b1 sinψ2 + φ̇2
1h1 cosψ1 sinφ1

−φ̇2
1h1 cosφ1


(3.80)

ār2 =

 0
0

−φ̈2h2cφ2

 . (3.81)

The angular accelerations can be read as

ωrk = JRrkq̇r + ω̄rk and αrk = JRrkq̈r + J̇Rrkq̇r +
∂ω̄rk

∂t︸ ︷︷ ︸
ᾱrk

. (3.82)

Due to the fact that any body rotation is not explicit time dependent (ω̄r1 = ω̄r2 = 0), the vector
of the corresponding angular velocity ωr1 and ωr2 can be described by the rotational Jacobian
matrices

ωr1 =

φ̇1 cosψ1

φ̇1 sinψ1

ψ̇1

 =

0 0 0 0 0 cosψ1

0 0 0 0 0 sinψ1

0 0 0 1 0 0


︸ ︷︷ ︸

JRr1

q̇r and (3.83)

ωr2 =

φ̇2 cosψ2

φ̇2 sinψ2

ψ̇2

 =

0 0 0 0 cosψ2 0
0 0 0 0 sinψ2 0
0 0 1 0 0 0


︸ ︷︷ ︸

JRr2

q̇r. (3.84)

The local angular accelerations yield

ᾱr1 =

−φ̇1ψ̇1 sinψ1

φ̇1ψ̇1 cosψ1

0

 and ār2 =

−φ̇2ψ̇2 sinψ2

φ̇2ψ̇2cosψ2

0

 . (3.85)

Furthermore the applied moments caused by the spring-damping suspensions lead to

lexy1 =

−(d1φ̇1 + c1φ1 + dc(φ̇1 − φ̇2) + cc(φ1−φ2)) cosψ1

−(d1φ̇1 + c1φ1 + dc(φ̇1 − φ̇2) + cc(φ1−φ2)) sinψ1

0

 and (3.86)

lexy2 =

−(d2φ̇2 + c2φ2 − dc(φ̇1 − φ̇2)− cc(φ1−φ2)) cosψ2

−(d2φ̇2 + c2φ2 − dc(φ̇1 − φ̇2)− cc(φ1−φ2)) sinψ2

0

 , (3.87)

whereby the overall applied forces and moments of the tires and of the spring-damping suspensions
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can be expressed in Cartesian coordinate with

q̄er =



Fyf1sψ1+δ1 + Fyr1sψ1 + Fauxcψ1

−Fyf1cψ1+δ1 − Fyr1cψ1
+ Fauxsψ1

−m1g
Fyf2sψ2

+ Fym2sψ2
+ Fyr2sψ2+δ2

−Fyf2cψ2
− Fym2cψ2

− Fyr2cψ2+δ2

−m2g

−(d1φ̇1 + c1φ1 + dc(φ̇1 − φ̇2) + cc(φ1 − φ2))cψ1

−(d1φ̇1 + c1φ1 + dc(φ̇1 − φ̇2) + cc(φ1 − φ2))sψ1

−Fyf1l1cδ1 − Fyf1sδ1h1sφ1
+ Fyr1l3

−(d2φ̇2 + c2φ2 − dc(φ̇1 − φ̇2)− cc(φ1 − φ2))cψ2

−(d2φ̇2 + c2φ2 − dc(φ̇1 − φ̇2)− cc(φ1 − φ2))sψ2

Fyf2b2 + Fym2b3 + Fyr2b4cδ2 − Fyr2sδ2h2sφ2



. (3.88)

After some calculations the equations of motion can be written in the structure

JTr M̄ rJr︸ ︷︷ ︸
M r

q̈ + JTr k̄r︸ ︷︷ ︸
kr

= JTr q̄
e
r︸ ︷︷ ︸

qer

+

�
�

�
�JTr Q̄rgr︸ ︷︷ ︸

qrr

. (3.89)

This representation describes the vehicle dynamics with respect to the initial reference frame. It
is not intended to use this equation for further derivations, so it is not necessary to transform it
to a body-fixed reference frame. The only purpose is to validate the linear model, which will be
described in the following.

3.4.2 Linear Lateral-Yaw-Roll Model

A proposal for a linear model of a single vehicle considering the roll motion, was published by
Segel (1956). His model takes the lateral, yaw and roll motion of a vehicle at a constant velocity
into account [Seg57]. Until today these equations of motion are important and they are revisited
of several authors who analyze the rollover behavior of vehicles and trucks e.g. [SC98], [OBA99] or
[SMC99]. Furthermore these model approach can be extended for general multi-unit vehicles, as
proposed in e.g. [Sam00], [SC03] or [CC08]. In the following a linear lateral-yaw-roll model for a
tractor-semitrailer (TST), based on the mentioned references will be explained and derived.

According to [Seg57] the “Dimensional Equations of Motion” describe the equilibrium of the forces
in the lateral direction (y), the yaw momentum (around z) and the roll momentum (around x) of
a tractor vehicle

m1v(ψ̇1 + β̇1)−m1φ̈1h1 = Yβ1β1 + Yψ̇1
ψ̇1 + Yδ1δ1 + Fc (3.90)

I1ψ̈1 − Ixz1φ̈1 = Nβ1
β1 +Nψ̇1

ψ̇1 +Nδ1δ1 − Fc l2 (3.91)

(Ixx1 +m1h
2
1)φ̈1 −m1v(ψ̇1 + β̇1)h1 − Ixz1ψ̈1 = m1gh1φ1 − c1φ1 − d1φ̇1 − cc(φ1 − φ2)− Fcz1,

(3.92)

where Fc represents the internal force at the hitch. The tire forces at the front and rear axle (Fyf1

and Fyr1) can be linearly described by the terms Yβ1
, Yψ̇1

and Yδ1 , the caused torsional moment
by Nβ1 , Nψ̇1

and Nδ1 . They are defined in the equations (3.66)-(3.69). As a simplification the
sprung and un-sprung masses are not distinguished. Figure 3.7(a) illustrates the nonlinear kinematic
relation between the tractor frame, the tractor’s center of gravity and the kinematic constraint to
the coupled semitrailer in consideration of the roll motion around the angle φ1. Since a linear model
has to be derived, the trigonometric terms can be linearized as clarified in figure 3.7(b). The free
body diagram is shown in figure 3.8.
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Figure 3.7: Kinematic of the tractor-semitrailer coupling-hitch in the horizontal and vertical direc-
tion.

In analogy, the equations for the semitrailer can be written as

m2v(ψ̇2 + β̇2)−m2φ̈2h2 = Yβ2
β2 + Yψ̇2

ψ̇2 + Yδ2δ2 − Fc (3.93)

I2ψ̈2 − Ixz2φ̈2 = Nβ2
β2 +Nψ̇2

ψ̇2 +Nδ2δ2 − Fc b1 (3.94)

(Ixx2 +m2h
2
2)φ̈2 −m2v(ψ̇2 + β̇2)h2 − Ixz2ψ̈2 = m2gh2φ2 − c2φ2 − d2φ̇2 + cc(φ1 − φ2) + Fcz2.

(3.95)

Remark 3.3. For the following derivatives, substitutions and rearrangements a Matlab-Code is
provided in A.3.

The body slip angle of the tractor β1 and the slip angular velocity β̇1 can be substituted using the
kinematic coupling constraints (3.49) and (3.50).
Furthermore the internal hitch force Fc can either be eliminated by using ...

... the lateral equations of the tractor and semitrailer (3.90)→(3.93)

m1l2ψ̈1 + (m2 +m1)vβ̇2 +m1b1ψ̈2 +m1(z1 − h1)φ̈1 − (m1z2 +m2h2)φ̈2 = ...

...− Yβ1
Γ + (Yψ̇1

+ Yβ1

l2
v

)ψ̇1 + (Yβ2
+ Yβ1

)β2 + (Yψ̇2
+ Yβ1

b1
v
− (m1 +m2)v)ψ̇2...

...+ Yβ1

z1

v
φ̇1 − Yβ1

z2

v
φ̇2 + Yδ1δ1 + Yδ2δ2,

(3.96)

... the lateral equation of the tractor and the yaw equation of the semitrailer (3.90)→(3.94)

m1b1l2ψ̈1 +m1b1vβ̇2 + (m1b
2
1 + I2)ψ̈2 +m1b1(z1 − h1)φ̈1 − (Ixz2 +m1b1z2)φ̈2 =

−Yβ1
b1Γ + (Yψ̇1

+ Yβ1

l2
v

)b1ψ̇1 + (Nβ2
+ Yβ1

b1)β2 + (Nψ̇2
+ Yβ1

b21
v
−m1vb1)ψ̇2

+Yβ1
b1
z1

v1
φ̇1 − Yβ1

b1
z2

v2
φ̇2 + Yδ1b1δ1 +Nδ2δ2,

(3.97)
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... the lateral and the yaw equation of the tractor (3.90)→(3.91)

(m1l
2
2 + I1)ψ̈1 +m1l2vβ̇2 +m1l2b1ψ̈2 + (m1l2(z1 − h1)− Ixz1)φ̈1 −m1l2z2φ̈2 =

−(Nβ1
+ Yβ1

l2)Γ + (Nψ̇1
+ Yψ̇1

l2 + Yβ1

l22
v

+Nβ1

l2
v

)ψ̇1 + (Nβ1
+ Yβ1

l2)β2+

((Nβ1 + Yβ1 l2)
b1
v
−m1vl2)ψ̇2 + (Yβ1 l2 +Nβ1)

z1

v
φ̇1 − (Nβ1 + Yβ1 l2)

z2

v
φ̇2

+(Nδ1 + Yδ1 l2)δ1,

(3.98)

... the lateral and the roll equation of the tractor (3.90)→(3.92)

(m1(z1 − h1)l2 − Ixz1)ψ̈1 +m1(z1 − h1)vβ̇2 +m1(z1 − h1)b1ψ̈2

+(Ixx1 +m1(h2
1 + z2

1)− 2m1h1z1)φ̈1 +m1z2(h1 − z1)φ̈2 =

−Yβ1
z1Γ + z1(Yβ1

l2
v

+ Yψ̇1
)ψ̇1 + Yβ1

z1β2 + (m1v(h1 − z1) + Yβ1
z1
b1
v

)ψ̇2

+(Yβ1

z2
1

v
− d1)φ̇1 + (m1gh1 − c1 − cc)φ1 − Yβ1

z1
z2

v
φ̇2 + ccφ2 + Yδ1z1δ1,

(3.99)

... or the lateral equation of the tractor and the roll equation of the semitrailer (3.90)→(3.95)

−m1z2l2ψ̈1 − (m2h2 +m1z2)vβ̇2 − (m1z2b1 + Ixz2)ψ̈2

m1z2(h1 − z1)φ̈1 + (Ixx2 +m2h
2
2 +m1z

2
2)φ̈2 =

Yβ1z2Γ− z2(Yβ1

l2
v

+ Yψ̇1
)ψ̇1 − Yβ1z2β2 + (m2h2v +m1vz2 − Yβ1z2

b1
v

)ψ̇2

−Yβ1
z2
z1

v
φ̇1 + ccφ1 + (Yβ1

z2
2

v
− d2)φ̇2 + (m2gh2 − c2 − cc)φ2 − Yδ1z2δ1.

(3.100)

Moreover, the derivation of (3.19) with respect to the time leads to the additional equation

Γ̇ = ψ̇1 − ψ̇2. (3.101)

The equations (3.96)-(3.101) can be rearranged in matrix form by using the state vector

qlin,r =
[
Γ ψ̇1 β2 ψ̇2 φ̇1 φ1 φ̇2 φ2

]T
(3.102)

and the input vector

u =
[
δ1 δ2

]T
. (3.103)

This results in equation (3.105) which is reproducible with the Matlab-Code of A.3. This model
equations can be used for the simulation-process, but the roll angles φ1 and φ2 does not directly
represent the risk of a tractor and Semitrailer rollover. Therefore a “Load Transfer Ratio” can be
introduced.

3.4.3 Load Transfer Ratio (LTR)

A performance index is needed in order to quantify the rollover risk. According to [AO98], [AO99]
or [CP01] a rollover coefficient or so-called “Load Transfer Ratio (LTR)” can be used, which is
defined as

LTR =
Fz,R − Fz,L
Fz,R + Fz,L

, (3.104)
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Figure 3.8: Five-DOF tractor-semitrailer model, which includes a rollover consideration.
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

0 m1l2 (m1 +m2)v m1b1 m1(z1 − h1) 0 −(m1z2 +m2h2) 0
0 m1l2b1 m1b1v m1b

2
1 + I2 m1b1(z1 − h1) 0 −(Ixz2 +m1b1z2) 0

0 m1l
2
2 + I1 m1l2v m1l2b1 m1l2(z1 − h1) − Ixz1 0 −m1l2z2 0

1 0 0 0 0 0 0 0
0 m1(z1 − h1)l2 − Ixz1 m1v(z1 − h1) m1(z1 − h1)b1 Ixx1 +m1(h2

1 + z2
1) − 2m1h1z1 0 m1z2(h1 − z1) 0

0 −m1z2l2 −(m2h2 +m1z2)v −(m1z2b1 + Ixz2) m1z2(h1 − z1) 0 Ixx2 +m2h
2
2 +m1z

2
2 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

˜P r



Γ̇

ψ̈1

β̇2

ψ̈2

φ̈1

φ̇1

φ̈2

φ̇2


= ...



−Yβ1 Yψ̇1
+ Yβ1

l2
v

Yβ2 + Yβ1 Yψ̇2
+ Yβ1

b1
v
− (m1+m2)v Yβ1

z1
v

0 −Yβ1
z2
v

0

−Yβ1b1 (Yψ̇1
+ Yβ1

l2
v

)b1 Nβ2 + Yβ1b1 Nψ2 + Yβ1
b21
v
−m1vb1 Yβ1b1

z1
v

0 −Yβ1b1
z2
v

0

−(Nβ1+Yβ1 l2) Nψ1+Yψ̇1
l2+Yβ1

l22
v

+Nβ1
l2
v

Nβ1 + Yβ1 l2 (Nβ1 + Yβ1 l2) b1
v
−m1l2v (Nβ1 + Yβ1 l2) z1

v
0 −(Nβ1 + Yβ1 l2) z2

v
0

0 1 0 −1 0 0 0 0

−Yβ1z1 (Yβ1
l2
v

+ Yψ̇1
)z1 Yβ1z1 m1v(h1 − z1) + Yβ1z1

b1
v

Yβ1
z21
v

− d1 m1gh1−c1−cc −Yβ1z1
z2
v

cc

Yβ1z2 −(Yβ1
l2
v

+ Yψ̇1
)z2 −Yβ1z2 m1vz2 +m2vh2 − Yβ1z2

b1
v

−Yβ1z2
z1
v

cc Yβ1
z22
v

− d2 m2gh2−c2−cc
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


︸ ︷︷ ︸

− ˜Qr



Γ

ψ̇1

β2

ψ̇2

φ̇1

φ1

φ̇2

φ2



...+



Yδ1 Yδ2
Yδ1b1 Nδ2

Nδ1 + Yδ1 l2 0
0 0

−Yδ1z1 0
−Yδ1z2 0

0 0
0 0


︸ ︷︷ ︸

˜Hr

u,

(3.105)

In analogy to equation (3.71) it can also be formulated in the state-space representation

⇒ q̇lin,r = P̃
−1

r (−Q̃r)︸ ︷︷ ︸
Ar

qlin,r + P̃
−1

r H̃r︸ ︷︷ ︸
Br

u. (3.106)
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whereby Fz,R is the sum of the vertical forces on the right tires and Fz,L is the sum of the vertical
forces on the left tires (with respect to the back view of the concerning vehicle). The LTR ranges
from +1 to −1. In case of a wheel lift, the vertical tire force on that side will disappear and the
LTR will become ±1. For driving straight, it will result in LTR = 0. As recommended in [vdV11],
the vertical tire forces for the semitrailer can be estimated by

Fz,R2 =
m2b1

e2(b1 + b3)

(e2 g

2
+ ay,2

(
hr,2 + h2 cosφ2

))
(3.107)

Fz,L2 =
m2b1

e2(b1 + b3)

(e2 g

2
− ay,2

(
hr,2 + h2 cosφ2

))
, (3.108)

with the lateral acceleration of the semitrailer

ay,2 = v (β̇2 + ψ̇2)− h2φ̈2, (3.109)

the track width e2 and the height of the roll center hr,2 of the semitrailer. These relations re-
sults from the force and the moments equilibrium. All the geometric distances are illustrated in
figure 3.8(a).

3.5 SimPack Model

Since a real TST system with all the sensors and the actuator for the steerable rearmost axle is
not available for this work, the performance of the steering strategies controllers will be verified
on a detailed and verified multi-body simulation model. As shown in figure 3.9, it is implemented
in the numerical multibody simulation software “SimPack”. This model is provided by previous
and related research projects. It takes all the relevant sub-systems into account, which form the
vehicle structure and characterize several dynamics and forces, e.g. for braking forces, Ackermann
steering geometry, additional constraints etc. Moreover, the multibody model relies on a very precise
tire model, which is based upon look-up tables identified experimentally. It also provides a “Co-
Simulation Interface“ (simat 8904 r2010a.dll) to Simulink, which was tested with MATLAB 7.12.0
(R2011a) and can be used to obtain the measurements from the system and to apply the control
actions, respectively. At the end of every simulation, all the data is available in the workspace,
ready for post-processing and analyzing.

Figure 3.9: Screenshot of the multi-body simulation SimPack model.



Chapter 4

Control Strategies

The developed control strategies are derived and introduced within this chapter. On the one hand
controllers for the tractor steering are designed in order to follow a given path constantly and on the
other hand trailer-steering strategies for the track-tracing of the semitrailer are proposed. Finally,
a controller will be proposed which intervenes with the semitrailer steering and aims to reduce the
risk of a trailer rollover.

4.1 Virtual Driver

Since the tractor-semitrailer models should follow a given path with a constant velocity, it is nec-
essary to design a submodel called “virtual driver”. During the simulation, it has to emulate the
behavior of a human driver, who tries to keep a certain tractor velocity v1 and adapt the front
steer angle of the tractor δ1 to stay on a defined path.

4.1.1 Cruise Control

This section describes the feedback control system, which automatically controls the speed of the
semitrailer unit to a specified velocity called vtarget. Figure 4.1 shows the structure of the closed
loop, where

∑
NonLin characterizes the nonlinear tractor-semitrailer system derived by section 3.1

and PID(s) denotes a standard proportional-integral-derivative (PID) control.

vtarget v2
PID(s)

∑
NonLin

Faux √
ẋ2

2 + ẏ2
2

ẋ2, ẏ2

v2

ev

Figure 4.1: Feedback control system for the cruise control.

It will be used to gain the velocity error ev in order to apply an auxiliary force on the tractor in the
longitudinal direction. The scalar velocity v2 of the semitrailer can be obtained from the system
output, independently of the represented reference frame. In this example the target velocity is
constant, so that the auxiliary force only compensates the dissipation results from tire slip forces
during the cornering.
The velocity of the SimPack-model according to section 3.5 has to be controlled by opening the
throttle (0...100%) or pushing the brake (0...100%). In order to control the dynamics of the actors
independently, the changed structure of the closed loop results in two PID(s) controls as shown
in figure 4.2. Both contain a saturation to the positive range of 0...100%. So if the velocity of the

41
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vtarget v2
PID(s)

∑
SP

Throttle

√
ẋ2

2 + ẏ2
2

ẋ2, ẏ2

v2

ev
Brake

PID(s)

−1

Figure 4.2: Feedback control system for the cruise control.

semitrailer is greater than the target velocity (ev < 0), the break will be pushed and the throttle
will be ignored.

Remark 4.1. Since the linear model derived in section 3.3 is derived with the assumption of a
constant body velocity, this control system is not necessary for simulating the linear system.

4.1.2 Tractors Steering Control

Before the design-process of a steering control for the front angle of the tractor, the definition of
the target path has to be discussed. A path can be discretized by a number of path points. Their
interconnection shapes a polygon, which describes a certain path. In order to generate various
types of paths, during this thesis the following functions are developed:

• pathAddStraight(...) → generate multiple points on a straight path;

• pathAddArc( radius,...) → generate multiple points on an arg path, specified by a given the
radius;

• pathAddSin(...) → generate multiple points on a sine path.

A hypothetical created polygon of the so-called “target-path” is depicted in figure 4.3.
The target steer angle of the tractor during each simulation time-step depends on the tractor’s
position, orientation and the given target path-polygon. So the strategy for the steering controller
is to detect and follow the path-polygon in the close environment of the tractor’s front, similarly
as it does a human.
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Figure 4.3: A hypothetical target-path polygon, defined by path points and created by developed
the functions.
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x

y

∆β1

OI
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r1

ψ1

β1

βpred

ri

v1r1i

prediction-arc

target-path

path points

arc points

RpredArc

intersection

δ1

Figure 4.4: Strategy of the virtual drivers controller of the tractor front steer angle δ1.

Figure 4.4 proposes the usage of a “prediction-arc”, which is relatively defined by the tractors center
of gravity, the radius RpredArc and a wide arc length. In analogy to the target-path, it is defined by
arc points which specify a polygon. The intersection ri of the prediction-arc and the target-path
indirectly determines the steer angle δ1. Since the tractor should move in the direction of ri, the
virtual driver has to calculate the deviation angle ∆β1 and use it for the steering control. In detail,
the intersection with respect to the tractors coordinate system OT can be described with

T
r1i =

T
φIr1i = φI(ri − r1), (4.1)

where the transformation matrix
T
φI is defined in (3.15) and r1 is the tractor position vector. The

related orientation angle βpred can be computed by the arctangent of the y/x-coordinate tuples. In
conclusion, the difference between βpred and the body slip angle β1 results in

∆β1 = βpred − β1. (4.2)

This quantity will be used to influence the steer angle δ1 of the tractor’s front wheel to com-
mand the orientation of the tractor in the direction of

T
r1i, as it is structured in figure 4.5. The

block called
∑

TST can characterize any of the regarded TST models, since this control strategy is
independent of the model itself.

The intersection of the two polygons has to be calculated during each simulation time-step. There-
fore an algorithm is developed, which calculates the intersection using the theory of the linear
algebra. The equations of two lines (ga ∩ gb), characterized by position vectors ra and rb and
direction vectors na and nb, can be written as

ga(αa) = ra + αana and gb(αb) = rb + αbnb, (4.3)
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target-path r1, ψ1∑
TST

∆β1
kPIntersection Trafo

T
ri

arctan y
x

βpred

prediction-arc

ri

β1

r1, ψ1

δ1

Figure 4.5: Feedback control system for the tractors steering control.

correct intersection

intersection will not
be taken into account

current consideredδ1
path points (limited range)

Figure 4.6: Considered path point of the virtual driver are limited to a certain range.

where αa and αb are the line parameters. If the two lines intersect (ga
!
= gb), there will exist a

solution for the inhomogeneous linear system of equations in the form of[
αai
αbi

]
=
[
−na nb

]−1
(ra − rb). (4.4)

Ensuring that the lines are only considered in the range between the polygon points, the position

vector r
(k)
a and direction vector n

(k)
a has to be redefined for each intersection calculation at each

kth-polygon line part. If the parameters are in the range of

0 ≤ αai ≤ 1 and 0 ≤ αbi ≤ 1, (4.5)

the polygon intersection will result from (4.3) with

ri = r(k)
a + αai n

(k)
a . (4.6)

In some cases there exist additional intersections between the prediction-arc and previous or subse-
quent target-path parts. This can be prevented with the consideration of path points in a limited
range, starting at the recent path point, which took part for the previous calculation of the inter-
section. Figure 4.6 shows these relations and also clarifies, that the paths are treated as a polygon.

4.2 Steering Strategies for the Track-Tracing of a Semitrailer

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.2.1 Feedforward Controller for a Steady-State Turn

– THE CONFIDENTIAL CONTENT IS RESTRICTED –
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4.2.2 Feed-Back Controller for a Path-Following

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.2.3 Feedforward-Feedback Control (FFFB)

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.2.4 FFFB with Reset & Patch-Strategy

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.2.5 FFFB with Reset & Shift-Strategy

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.2.6 FFFB with Relative Coordinates

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.3 Steering Strategies for Active Rollover Avoidance

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.3.1 Rollover of a Single-Unit Vehicle

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

4.3.2 Active Roll Damping of a Tractor-Semitrailer

– THE CONFIDENTIAL CONTENT IS RESTRICTED –
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Chapter 5

Simulation

The derived tractor-semitrailer (TST) models and steering strategies are implemented in different
simulation software in order to analyze the system behavior for different drive maneuvers. This
chapter describes the simulation structures and results of the designed models and steering strate-
gies.

5.1 Simulation Structure

Within the scope of this work various models and strategies are developed. This section gives a
brief overview of the process chain and introduces the structures of the different simulation models.

5.1.1 Global Process Chain

Figure 5.1 shows the generalized process chain for the tractor-semitrailer simulation. The constant
model parameters, simulation settings, controller parameters and initial conditions are defined
during the “Pre-Processing”. Furthermore the model inputs i.e. the tractor steer angle δ1 or target
path are determined. The next step includes the calculation of the simulation results. On one hand,
the derived nonlinear and linear TST-model equations are completely implemented in Simulink
and on the other hand the complex validation model runs in a “Co-Simulation dll-Interface” with
SimPack. Afterwards the simulation results can be red and the trajectories can be calculated with
respect to the initial reference frame OI . The summary of the results is plotted in several figures
and a 3D-animation of the moving tractor-semitrailer can be generated. This animation is created
by the MATLAB-Toolbox “MatCarAnim”, which was developed in the scope of this thesis and
is documented in the appendix B.

5.1.2 Structure of the Simulation Models

The following TST-models introduced in chapter 3 are considered and investigated in the scope of
this thesis:

• Nonlinear Lateral-Yaw Model
∑

TST

• Linear Lateral-Yaw Model
∑

TST,lin

• SimPack-Model
∑

TST,SP

• Nonlinear Lateral-Yaw-Roll Model
∑

TST,Roll

• Linear Lateral-Yaw-Roll Model
∑

TST,lin,Roll

At first the steering strategies for the track-tracing of the semitrailer will be analyzed using the
“Lateral-Yaw Models” and the system structure according to figure 5.2. The equations of motion
are implemented in the subsystem “Tractor-Semitrailer-Model” which is involved in the integra-
tion loop. The state vector x includes the generalized coordinates q in state-space representation

47
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conforming to equations (2.51) and (3.63), respectively. The model parameters are provided in a
structure variable. Normally a human driver steers the tractor, opens the throttle and pushes the
brake. So during the simulation these tasks are managed by the “Virtual Driver” which needs the
current tractor position with respect to the initial reference frame and the system states. The cruise
control ensures that the TST drives with a target velocity. On one hand, it is possible to give a
target path which should be followed by the tractor and on the other hand the steer angle of the
tractor can be directly defined. The track-tracing strategy of the semitrailer is implemented in the
block “Semitrailer Ctr (FFFB)” which contains the steady-state law and one of the path-following
controllers of the sections 4.2.2-4.2.6.

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

The state vector xr includes the generalized coordinates qr in state-space representation again.
The different constellation are analysed in the following section.
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Figure 5.1: Structure of the global process chain for the tractor-semitrailer simulation.
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Ftires

noise

m
ea

su
ra

b
le

st
a
te

s

Semitrailer Ctr (FFFB)

δ1

x Faux

Tractor Position

r1 = [x1; y1]T
[x1 y1] = f(x)

Target Path

state vector x

Model
Parameters

par

Figure 5.2: Simulation structure of the lateral-yaw models for the investigation of the track-tracing.

5.2 Results and Analysis

This chapter presents and analysis the simulation results of the concerning simulation models and
strategies. Beside the validation of the various TST-models, the impacts of steering strategies and
the behaviors of the dynamic systems are analyzed. The explicit values of the model parameters
and control gains are given in the appendix A.1.

5.2.1 Response Characteristics of the linear Models

The system-dynamics of the linear “Lateral-Yaw Model” (
∑

TST,lin) and “Lateral-Yaw-Roll Model”
(
∑

TST,lin,Roll) can be characterized by multiple transfer functions. They can be formulated from
each input to each output and are defined by a single regarded Laplace transferred input U(s) and
output Y (s). In general it results in

Gyu(s) :=
Y (s)

U(s)
. (5.1)

For a system in state-space representation it can be calculated according to (2.56). Initially the
model

∑
TST,lin has to be taken into account. One consideration is the influence of the semitrailer

steer angle δ2 on the yaw dynamics (i.e. ψ̇2) of the trailer. According to (3.71) the previous transfer
function results in

Gψ̇2δ2
(s) = cT

ψ̇2
(sI −A)−1bδ2 . (5.2)

The input matrix bδ2 is the second column of B from equation (3.71) and the output matrix is the
row vector cψ̇2

=
[
0 0 0 1

]
, which is used to select the semitrailer yaw velocity ψ̇2. Figure 5.3

depicts the Bode-diagram for various TST velocities. It shows that the magnitude of the response
exponentially increases with velocity and that a velocity of more than 120km/h leads to high
amplifications(|Gψ̇2δ2

| > 1) at frequencies between 1rad/s and 10rad/s.
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The transfer function from the semitrailer steer angle δ2 to the roll angular velocity (i.e. φ̇2) of
the trailer can be calculated in order to investigate the roll dynamics of the semitrailer. It can be
derived from equation (3.106) with

Gφ̇2δ2
(s) = cT

rφ̇2
(sI −Ar)

−1brδ2 . (5.3)

Similarly the input matrix brδ2 is the second column of Br from equation (3.106) and the output
matrix is the row vector cφ̇2

=
[
0 0 0 0 0 0 1 0

]
, which is used to select the semitrailer

roll velocity φ̇2. Figure 5.4 illustrates the Bode-diagram of the roll transfer function for different
TST velocities. It also shows that the magnitude of the response exponentially increases with the
velocity and that a velocity of more than 120km/h leads to high roll amplifications(|Gφ̇2δ2

| > 1) at
frequencies between 2rad/s and 8rad/s.

5.2.2 Validation of the TST-Models

The various TST-models must be validated and compared before they can be used for the assessment
of the steering strategies. For the general validation of the models the steering the semitrailer is
ignored which means δ2 = 0. Figure 5.5 depicts the animation screen-shots of a TST entering a
roundabout. The simulation results were calculated with the “Nonlinear Lateral-Yaw Model”

∑
TST

and the animation was created with the Toolbox MatCarAnim. Figure 5.5(a) clarifies the single-
track model in a 3D-view and figure 5.5(b) shows it from a top-view. Furthermore, the trajectories
of the 5th-wheel and the rearmost trailer end are illustrated. Since the trailer is unsteered it offtracks
to the inside of the turns, which results in a deviation of the both trajectories. Within this driving
maneuver the different models are compared and validated in the following.
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Figure 5.6(a) depicts the position-trajectories of the nonlinear (
∑

TST), linear (
∑

TST,lin) and Sim-
Pack (

∑
SP) “Lateral-Yaw” model at a velocity of 20km/h and a roundabout radius of 20m. On

one hand it shows the positions of the 5th-wheel jC and on the other hand the trajectories of the

rearmost trailer end jE . Comparing all TST-model it is obvious, that the simulation results of
the different systems are broadly similar. In the detail view some small deviations are recognizable
which result from the simplifications and assumptions during the derivation. The associated tire
forces of the nonlinear and SimPack-model are plotted in figure 5.6(b). Since the front axle is
controlled by the steering controller of the virtual driver which sequentially adapts the steer angle
to the target path, some small oscillations of the concerning tire force Fyf1 can be observed. The
differences between the models are also very small and can be neglected. Since the linear model
uses the same tire model as the nonlinear, the trajectories of the tire forces are almost the same
and are not shown.

Remark 5.1. The illustration also clarifies that the largest tire forces always occur at the rear axle
of an unsteered semitrailer. According to section 2.1.1 the tire force depends linearly on the tire slip
angle. So in order to reduce this tire force, the semitrailer should be equipped by an active steerable
axle which is the focus of this research.

The roll-extended models contain the same lateral and yaw equations, so the resulting trajectories
are also very similar. In particular during the low velocity of 20km/h the roll motion is vanishing
small. In order to validate the “Lateral-Yaw-Roll” models, the load transfer ratio (LTR) at a
higher velocity can be regarded. Figure 5.7(d) illustrates the LTR-trajectories of the nonlinear
and linear “Lateral-Yaw-Roll” models with an unsteered semitrailer and at a velocity of 35km/h.
The input of the system is the tractor steer angle δ1, shown in figure 5.7(a). Furthermore the



52 5.3. Figures

tire forces (calculated by a saturated tire force law) are depicted in figure 5.7(b). Finally the
position-trajectories are shown in figure 5.7(c). Since the TST drives with a high velocity and a
relatively large tractor steer angle is applied, the rear tire force of the semitrailer is saturated and
the semitrailer is close to a rollover (LTR2 → 1). The difference between the nonlinear (

∑
TST,Roll)

and linear (
∑

TST,lin,Roll) roll-extended model is very small, so it can be assumed that the linear
model is valid and accurate for the roll investigations.

5.2.3 Track-Following Analysis with the Horizontal Planar Models

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

5.2.4 Active-Roll-Damping Analysis with the Roll-extended Models

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

5.3 Figures

This section contains the essential figures of the simulation results. For simulating a time of 20sec,
the calculation times approximately resulted:

• Nonlinear-models: about 20 sec

• Linear-model: about 10 sec

• SimPack-model: about 2 min

– THE CONFIDENTIAL CONTENT IS RESTRICTED –
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(a) 3D view of the TST

(b) Top view of the TST

x/m

−x/m

y/m

y/m

5th-wheel: jC
reasmost trailer end: jE

Trajectory of the road

Trajectory

of the road

Figure 5.5: Animation of a tractor with an unsteered semitrailer entering a roundabout. The sim-
ulation results were calculated with the “Nonlinear Lateral-Yaw Model”

∑
TST and the animation

was created with the Toolbox MatCarAnim.
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Figure 5.6: Position-trajectories of the different models with an unsteered semitrailer and at a
velocity of 20km/h.
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Chapter 6

Summary and Outlook

This thesis focuses the modeling and control of articulated tractor-semitrailers (TST). Standard
European semitrailers usually utilize an unsteered tri-axle group. They are produced with low
financial efforts but have a high tire wear and a reduced maneuverability. The objective of this
thesis was to investigate the utilization of a steered rearmost axle of semitrailers in order to improve
the performance during low-speed turning maneuvers, high-speed cornering and to react during
critical situations such as rollover.
The second chapter introduced some fundamentals of vehicle dynamics with respect to the charac-
terization of the tires, basic vehicle modeling and TST specific approaches. Furthermore, insights
of previous research were given and some existing steering and control strategies for a tractor-
semitrailer trace-tracking and rollover prevention were presented.
The first challenge during this work was to derive a linear and nonlinear TST single-track model,
which take the lateral and yaw motion of the coupled vehicles into account. On the one hand the
nonlinear equations of motion (derived by the Newton-Euler approach) characterize the dynamic
behavior very accurately, but on the other hand the simplified linear equations can be used for
system analysis and for the design of linear model-based controls. The linear model was represented
with a saturated tire model and as a fully linear formulation. In addition, the models were extended
and re-derived in order to account for the roll motions of the system at high-speed. Finally, the
existing multibody simulation (SimPack) model was introduced.
Afterwards the control strategies for the tractor front axle steering and the semitrailer rearmost
axle steering were developed and explained. Since the main focus of this thesis was to improve
the semitrailer tracking and roll behavior using rear axle steering, multiple control strategies for
the semitrailer-steering were designed. Thereby the trajectory of the coupling point is traced with
the rear trailer end, reducing offtrack and improving maneuverability of the vehicle. In this scope
a steady-state and feedback control strategy was developed. In addition, a feedforward-feedback
controller (FFFB) combines both strategies. Furthermore an “active rollover damping”(ARD)
control law was proposed, which intervenes with the tractor and / or the trailer steering and aims
to reduce the risk of a trailer rollover.
Finally, the derived models and controllers were implemented into the simulation environments. The
process chain and simulation structures were illustrated and explained. The models were validated
and compared within the simulation results. The influences and improvements of the steering
strategies were investigated for a typical maneuver: entering a roundabout at low velocity. It was
shown that the FFFB strategy leads to a reliable track-tracing at both, the simplified nonlinear
TST model and the precise SimPack model. Moreover the ARD was tested at the tractor and the
semitrailer steering. The roll dynamics were simulated during a critical maneuver and the results
were analyzed.

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

In a further research the derived TST models can be used in order to extend the investigation and
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improvement of the model dynamics using the trailer steering. An optimal path following behavior
of the trailer can probably also be realized, designing appropriate observers. The introduced active
roll damping strategy is very simple, has a great potential and should be considered in further
investigations. Of course, new alternative rollover-prevention-controls could also lead to much
better improvements. However, before an universal steering strategy can be implemented on a real
semitrailer control device, various control and switching strategies for mixed maneuver (low and
high speed / sharp and smooth cornering / different load cases) should be designed and tested
intensively.



Appendix A

Model Parameters and Additional
Derivations

A.1 Vehicle Parameters

– THE CONFIDENTIAL CONTENT IS RESTRICTED –

A.2 Math Notations

This chapter introduces the math notations of this work. On one hand they are inducted to
simplify and shorten the equations and on the other hand they should be conductive to the clear
understanding of complex relations.
In expensive equations the trigonometric functions of an arbitrary angle α are abbreviated with

sα = sin(α) cα = cos(α), (A.1)

as it was suggested in [PS10]. Whenever a symbol of the Greek alphabet is sub-scripted after a ’s’
or ’c’ letter, it will be treated as the argument of the sinus or cosines function, respectively.
If a vector r or coordinate tuple x is expressed with respect to a reference frame called OS , the
abbreviation will be subscripted before the quantity,

S
r , or

S
x. (A.2)

Otherwise they are related to the initial reference frame OI . Furthermore the transformation of a
reference frame OT to the frame OS will be notated with

SφT . (A.3)

The description of a trajectory or discrete points of time will be realized with a super-scripted and
stapled index or position. So a position trajectory of n values can be exemplarily described by

r(k), where k = 1(1)n. (A.4)

A.3 Equations of Motion according to the Lagrangian Ap-
proach

In the following, the non-linear model in agreement with the Lagrangian equations of motion of
second kind is derived. In [dB01] and [FMG06] a model of an articulated vehicle with n-trailers
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conforming to Lagrange’s method was established. The kinematic energy (T ) can be written as

T =
1

2

2∑
k=1

[
˙rTk ψ̇k

]
Mk

[
ṙTk ψ̇k

]T
(A.5)

where rk is the position vector of the center of gravity and Mk denotes the mass matrix

Mk =

mk 0 0
0 mk 0
0 0 Ik

 (A.6)

of the corresponding body with index k. With the determination of the generalized coordinates

q =
[
x2 y2 ψ2 ψ1

]T
, (A.7)

the vector
[
ṙTk ψ̇k

]T
can be expressed by[

ṙk
ψ̇k

]
= Jk q̇ , (A.8)

where J1 is the Jacobian matrix of the tractor and J1 of the semitrailer body,

J1 =

1 0 −b1 sinψ2 −l2 sinψ1

0 1 b1 cosψ2 l2 cosψ1

0 0 0 1

 and J2 =

1 0 0 0
0 1 0 0
0 0 1 0

 . (A.9)

Substituting (A.8) into (A.5) yields

T =
1

2
q̇T M(q) q̇ , where M(q) =

2∑
k=1

JTk Mk Jk (A.10)

is the global mass matrix. In contrast to the matrix presentation, the kinetic energy can also be
calculated segmentally,

T =
1

2

2∑
k=1

2∑
l=1

M[k,l] q̇[k] q̇[l] . (A.11)

According to the methods of the virtual work described in [Sha05], the D’Alembert-Lagrange’s
equation can be derived. For the current MBS with four degree of freedoms it results

4∑
i=1

(
d

dt

∂T

∂q̇[i]
− ∂T

∂q[i]
−Q[i]

)
δq[i] = 0 , (A.12)

where δq is the vector of virtual displacement in generalized coordinates and Q is the vector of
generalized forces, respectively, the term

∑4
i=1Q[i] δq[i] characterise the virtual work δWe of the

generalized forces. It can also be calculated with the vector of applied forces F e and the virtual
displacement δre in Cartesian coordinates in matrix form,

δWe = QT δq = F Te δre . (A.13)

Since the virtual displacement in Cartesian coordinates can be written as

δre =
∂re
∂q

δq , (A.14)
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the vector of generalized forces can be evaluated by

QT = F Te
∂re
∂q

, (A.15)

where re contains all positions of the acting tire forces in Cartesian coordinates. For the vector of
the applied tire force in Cartesian coordinates it results

F e =



Ff1x

Ff1y

Fr1x
Fr1y
Ff2x

Ff2y

Fm2x

Fm2y

Fr2x
Fr2y
F1x

F1y



=



Fyf1 sin(ψ1 + δ1)
−Fyf1 cos(ψ1 + δ1)

Fyr1 sinψ1

−Fyr1 cosψ1

Fyf2 sinψ2

−Fyf2 cosψ2

Fym2 sinψ2

−Fym2 cosψ2

Fyr2 sin(ψ2 + δ2)
−Fyr2 cos(ψ2 + δ2)

Faux cosψ2

Faux sinψ2



, (A.16)

at the positions

re =



xf1

yf1

xr1
yr1
xf2

yf2

xm2

ym2

xr2
yr2
x1

y1



=



x2 + b1 cosψ2 + (l1 + l2) cosψ1

y2 + b1 sinψ2 + (l1 + l2) sinψ1

x2 + b1 cosψ2 − (l3 − l2) cosψ1

y2 + b1 sinψ2 − (l3 − l2) sinψ1

x2 − b2 cosψ2

y2 − b2 sinψ2

x2 − b3 cosψ2

y2 − b3 sinψ2

x2 − b4 cosψ2

y2 − b4 sinψ2

x2 + b1 cosψ2 + l2 cosψ1

y2 + b1 sinψ2 + l2 sinψ1



. (A.17)

If the generalized coordinates qi are linearly independent, Eq. (A.12) leads to Lagrange’s equation
of second kind which is given by

d

dt

∂T

∂q̇[i]
− ∂T

∂q[i]
= Q[i] , i = 1(1)4 . (A.18)

For the ith generalized coordinate the derivatives can be calculated,

∂T

∂q̇[i]
=

2∑
l=1

M[i,l]q̇[l] (A.19)

d

dt

∂T

∂ ˙q[i]
=

2∑
l=1

M[i,l]q̈[l] +

2∑
k=1

2∑
l=1

∂M[i,l]

∂q̇[k]
q̇[k] q̇[l] (A.20)

∂T

∂q[i]
=

1

2

2∑
k=1

2∑
l=1

∂M[k,l]

∂q̇[i]
q̇[k] q̇[l] . (A.21)

So the equation of motion for the ith generalized coordinate leads to

2∑
l=1

M[i,l]q̈[l] +

2∑
k=1

2∑
l=1

(
∂M[i,l]

∂q̇k
− 1

2

∂M[k,l]

∂q̇[i]

)
q̇[k] q̇[l] = Q[i] , i = 1(1)4 , (A.22)
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or formulated in matrix form

M(q) q̈ +C(q, q̇) q̇ = Q(q) . (A.23)

After some rearrangements, the equation of motions in matrix-form results
m1 +m2 0 −b1m1sψ2 −l2m1sψ1

0 m1 +m2 b1m1cψ2 l2m1cψ1

−b1m1sψ2 b1m1cpsi2 m1b
2
1 + I2 l2b1m1cψ1−ψ2

−l2m1sψ1 l2m1cψ1 l2b1m1cψ1−ψ2 m1l
2
2 + I1

 q̈ + ...


0 0 −ψ̇2b1m1cψ2 −ψ̇1l2m1cψ1

0 0 −ψ̇2b1m1sψ2 −ψ̇1l2m1sψ1

−
ψ̇2b1m1cψ2

2
−
ψ̇2b1m1sψ2

2

b1m1(ẋ2cψ2 + ẏ2sψ2 − ψ̇1l2sψ1−ψ2)

2
−
l2b1m1sψ1−ψ2(2ψ̇1 − ψ̇2)

2

−
ψ̇1l2m1cψ1

2
−
ψ̇1l2m1sψ1

2
−
l2b1m1sψ1−ψ2(ψ̇1 − 2ψ̇2)

2

l2m1(ψ̇2b1sψ1−ψ2 + ẋ2cψ1 + ẏ2sψ1)

2

q̇ ...

=


Fyf1sδ1+ψ1 + Fyr2sδ2+ψ2 + Fyf2sψ2 + Fym2sψ2 + Fyr1sψ1 + Fauxcψ1

−Fyf1cδ1+ψ1 − Fyr2cδ2+ψ2 − Fyf2cψ2 − Fym2cψ2 − Fyr1cψ1 + Fauxsψ1

Fyf2b2 + Fym2b3 − Fyr1b1cψ1−ψ2 − Fyf1b1cδ1+ψ1−ψ2 + Fyr2b4cδ2 + Fauxb1sψ1−ψ2

Fyr1(l3 − l2) − Fyf1cδ1(l1 + l2)

 .

(A.24)

The trigonometric functions are notated in agreement with (A.1).

A.4 Validation with the Bicycle Model

In this section the derivation of the equations of motion should be validated with the bicycle model
derived in section 2.1.2. Therefore, the position vectors to the centers of gravity will be redefined
(in contrast to section 3.1.1) with respect to the tractor (and not to the semitrailer) as shown
in figure 3.1,

r1 =

x1

y1

0

 and r2 =

x1 − l2 cosψ1 − b1 cosψ2

y1 − l2 sinψ1 − b1 sinψ2

0

 . (A.25)

With the generalized coordinates q1 =
[
x1 y1 ψ1 ψ2

]T
, the translational Jacobian matrices JT1

and JT2 for the tractor and semitrailer results in

JT1 =
∂r1

∂q1

=

1 0 0 0
0 1 0 0
0 0 0 0

 and JT2 =
∂r2

∂q1

=

1 0 l2 sinψ1 b1 sinψ2

0 1 −l2 cosψ1 −b1 cosψ2

0 0 0 0

 . (A.26)

In analogy to (3.4), the local acceleration are

ā1 =

0
0
0

 and ā2 =

l2cψ1ψ̇
2
1 + b1cψ2

ψ̇2
2

l2sψ1ψ̇
2
1 + b1sψ2

ψ̇2
2

0

 (A.27)

and the applied forces q̄e are identical to (3.10). Conforming to (3.6) this yields
m1 +m2 0 l2m1sψ1

b1m1sψ2

0 m1 +m2 −l2m1cψ1
−b1m1cψ2

l2m1sψ1 −l2m1cψ1 m2l
2
2 + I1 l2b1m2cψ1−ψ2

b1m1sψ2 −b1m1cpsi2 l2b1m2cψ1−ψ2 m2b
2
1 + I2

 q̈1 +


l2m2cψ1

ψ̇2
1 + b1m2cψ2

ψ̇2
2

l2m2sψ1
ψ̇2

1 + b1m2sψ2
ψ̇2

2

ψ̇2
1l2b1m2sψ1−ψ2

−ψ̇2
2l2b1m2sψ1−ψ2

 ...

=


Fyf1sδ1+ψ1

+ Fyr2sδ2+ψ2
+ Fyf2sψ2

+ Fym2sψ2
+ Fyr1sψ1

+ Fauxcψ1

−Fyf1cδ1+ψ1 − Fyr2cδ2+ψ2 − Fyf2cψ2 − Fym2cψ2 − Fyr1cψ1 + Fauxsψ1

Fyf2b2 + Fym2b3 − Fyr1b1cψ1−ψ2 − Fyf1b1cδ1+ψ1−ψ2 + Fyr2b4cδ2 + Fauxb1sψ1−ψ2

Fyr1(l3 − l2)− Fyf1cδ1(l1 + l2)

 .

(A.28)
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After the transformation (3.17) with the generalized coordinates
T
q1 =

[
T
x1 T

y1 ψ1 ψ2

]T
and the rotation matrix 

ẋ1

ẏ1

ψ̇1

ψ̇2


︸ ︷︷ ︸
q̇1

=


cosψ1 − sinψ1 0 0
sinψ1 cosψ1 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

IΦT


T
ẋ1

T
ẏ1

ψ̇1

ψ̇2


︸ ︷︷ ︸
T
q̇1

(A.29)

to the tractor-fixed reference frame OT shown in figure 3.2, the tractor related equations of motion
can be written by

m1 +m2 0 0 −b1m2sψ1−ψ2

0 m1 +m2 −l2m2 −b1m2cψ1−ψ2

0 −l2m2 m2l
2
2 + I1 l2b1m1cψ1−ψ2

−b1m2sψ1−ψ2 −b1m2cψ1−ψ2 l2b1m1cψ1−ψ2 m2b
2
1 + I2

T q̈1+


ψ̇2

1l2m2 +ψ̇2
2b1m2cψ1−ψ2−ψ̇1 T ẏ1(m1+m2)

−ψ̇2
1b1m2sψ1−ψ2 + ψ̇1 T ẋ1(m1 +m2)

−l2m2(ψ̇1 T ẋ1 − ψ̇2
2b1sψ1−ψ2)

−ψ̇1b1m2(T ẋ1cψ1−ψ2+(ψ̇1l2 −T ẏ1)sψ1−ψ2)

...

=


Faux + Fyr2sδ2−ψ1+ψ2 + Fyf1sδ1 − Fyf2sψ1−ψ2 − Fym2sψ1−ψ2

−Fyr1 − Fyr2cδ2−ψ1+ψ2 − Fyf1cδ1 − Fyf2cψ1−ψ2 − Fym2cψ1−ψ2

Fyr1l3 + Fyf2l2cψ1−ψ2 + Fym2l2cψ1−ψ2 + Fyr2l2cδ2−ψ1+ψ2 − Fyf1l1cδ1
Fyf2(b1 + b2) + Fym2(b1 + b3) + Fyr2cδ2(b1 + b4)

 .

(A.30)

If one consider the tractor vehicle without the trailer (m2 = Fyf2 = Fym2 = Fyr2 = 0) and the
auxiliary force (Faux = 0), the simplified equation leads to

m1 0 0 0
0 m1 0 0
0 0 I1 0
0 0 0 0

 T
q̈1 +


−ψ̇1 T ẏ1m1

ψ̇1 T ẋ1m1

0
0

 =


Fyf1sδ1

−Fyf1cδ1 − Fyr1
−Fyf1l1cδ1 + Fyr1l3

0

 , (A.31)

respectively with (2.13) and the assumption of small steer angles δ1 << 1 it yields

m1 T ẍ1 −m1ψ̇1 T ẏ1 = Cαf αf δ1 (A.32)

m1 T ÿ1 +m1ψ̇1 T
ẋ1 = −Cαf αf − Cαr αr (A.33)

I1ψ̈1 = −Cαf αf l1 + Cαr αr l3 . (A.34)

The resulted velocity v1 and the body slip angle β1 of the tractor are depict in figure (A.1). They

T
ẏ1

T
ẋ1

β1

v1

Figure A.1: Explanation of β1, the body slip angle of the tractor.

are linked to the velocity components (
T
ẋ1, T ẏ1) and with the assumption of a small body slip

angle β1 << 1 (equivalent to section 2.1.2) the following conditions can be derived,

cosβ1 = T
ẋ1

v1
≈ 1 ⇔

T
ẋ1 ≈ v1 ⇒

T
ẍ1 ≈ v̇1 (A.35)

sinβ1 = T
ẏ1

v1
≈ β1 ⇔

T
ẏ1 ≈ v1β1 ⇒

T
ÿ1 ≈ v̇1β1 + v1β̇1 . (A.36)
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In analogy to (2.16), the front and rear tire slip angles can be calculated by

αf ≈ δ1 −
ψ̇1lf
v1
− β1 and αr ≈

ψ̇1lr
v1
− β1 . (A.37)

The next step is to insert the equations (A.35-A.37) in (A.32-A.34), which yields

m1v̇1 −m1ψ̇1v1β1 = Cαf

(
δ1 −

ψ̇1lf
v1
− β1

)
δ1 (A.38)

m1(v̇1β1 + v1β̇1) +m1ψ̇1v1 = −Cαf

(
δ1 −

ψ̇1lf
v1
− β1

)
− Cαr

(
ψ̇1lr
v1
− β1

)
(A.39)

I1ψ̈1 = −Cαf

(
δ1 −

ψ̇1lf
v1
− β1

)
l1 + Cαr

(
ψ̇1lr
v1
− β1

)
l3 . (A.40)

For a consideration of the vehicle at constant velocity (v̇ = 0), the second and third equations leads
again to the Riekert and Schunck’s equations (2.23)

m1v1(β̇1 + ψ̇1)− (Cαf + Cαr)β1 −
Cαf l1 − Cαr l3

v1
ψ̇1 = −Cαf δ1 (A.41)

I1ψ̈1 −
1

v1
(l23Cαr + l21Cαf ) ψ̇1 − (l1Cαf − l3Cαr)β1 = −Cαf δ1 l1 . (A.42)

A.5 Alternative Derivation of the linear TST Model

This section describes an alternative derivation of the linear tractor-semitrailer (TST) model. The
equations of motion derived in section 3.3 are obtained by simplifying and linearising the nonlinear
TST model. In contrast, the linear model also directly results from a simplified approach of the
translational and angular momentum. For of a body with the mass mi, the directional and lateral
acceleration ẍi and ÿi, the moment of inertia Ii and the rotational acceleration ψ̈i, it can be generally
formulated

miẍi =
∑

Fxi , miÿi =
∑

Fyi , and Iiψ̈i =
∑

Mi , (A.43)

where
∑
Fxi,

∑
Fxi and

∑
Mi characterize the forces and moment acting on the body. Figure A.2

shows the forces acting on the TST. In order to derive linear equations of motion, which describe

Γ
l1

l3

b1

l2
b2

b3

b4

m2

m1

I1

δ1

δ2

Fyr1

Fyf1

Fyr2
Fym2 Fyf2

x

y

OI

I2

ψ̇2
v

ψ̇1
v

β2

β1

Fc

Fc

Figure A.2: Single Track Model of Tractor and Semitrailer(TST) with a steered rearmost axle for
the derivation of the linear equations.

the lateral and rotational behavior of the TST, the simplifications reported by the enumeration in
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section 3.3 have to be taken into account. The lateral acceleration of the tractor can be described
by the body angular velocity ψ̇1, the change of the body slip angle β1 and the constant tractor
velocity v with

ÿ1 = v(ψ̇1 + β̇1) . (A.44)

So the equilibrium of the forces in the direction of y (lateral) and the momentum around the c.g.
of the tractor with the mass m1 and moment of inertia I1 yields

m1v(ψ̇1 + β̇1) = −Fyf1 − Fyr1 + Fc =Yβ1β1 + Yψ̇1
ψ̇1 + Yδ1δ1 + Fc (A.45)

I1ψ̈1 = −Fyf1l1 + Fyr1l3 − Fc l2 =Nβ1
β1 +Nψ̇1

ψ̇1 +Nδ1δ1 − Fc l2 , (A.46)

where the force Fc represents the internal force at the hitch. The tire forces at the front and rear
wheel, Fyf1 and Fyr1, can also be linearly described by the terms Yβ1

, Yψ̇1
and Yδ1 , the caused

torsional moment by Nβ1
, Nψ̇1

and Nδ1 . Their explicit calculation will be explained later on.
In analogy, the equations for the semitrailer can be written

m2v(ψ̇2 + β̇2) = −Fyf2 − Fyr2 − Fyr1 − Fc =Yβ2
β2 + Yψ̇2

ψ̇2 + Yδ2δ2 − Fc (A.47)

I2ψ̈2 = Fyf2b2 + Fym2b3 + Fyr2b4 − Fcb1 =Nβ2
β2 +Nψ̇2

ψ̇2 +Nδ2δ2 − Fcb1 . (A.48)

The internal hitch force Fc can either be eliminated by using (A.45) and (A.47),

m2v(ψ̇2 + β̇2) = Yβ2
β2 + Yψ̇2

ψ̇2 + Yδ2δ2 −m1v(ψ̇1 + β̇1) + Yβ1
β1 + Yψ̇1

ψ̇1 + Yδ1δ1 , (A.49)

or by using (A.45) and (A.48),

I2ψ̈2 = Nβ2β2 +Nψ̇2
ψ̇2 +Nδ2δ2 −m1v(ψ̇1 + β̇1)b1 + Yβ1β1b1 + Yψ̇1

ψ̇1b1 + Yδ1δ1b1 , (A.50)

or in conclusion by using (A.45) and (A.46),

I1ψ̈1 = Nβ1
β1 +Nψ̇1

ψ̇1 +Nδ1δ1 −m1v(ψ̇1 + β̇1)l2 + Yβ1
β1l2 + Yψ̇1

ψ̇1l2 + Yδ1δ1l2 . (A.51)

The body slip angle of the tractor β1 and the slip angular velocity β̇1 can be substituted using the
kinematic coupling constraints (3.37) and (3.38). Moreover, the derivation of (3.19) with respect
to the time leads to the additional equation

Γ̇ = ψ̇1 − ψ̇2 . (A.52)

Furthermore, the generalized coordinates

qlin =
[
Γ ψ̇1 β2 ψ̇2

]T
(A.53)

and the input vector

u =
[
δ1 δ2

]T
(A.54)

will be defined. After some rearrangements, the equations (A.51)-(A.52) can be written in matrix
form as
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M
o
d

el


0 m1l2 (m1 +m2)v m1b1
0 m1l2b1 m1b1v m1b

2
1 + I2

0 m1l
2
2 + I1 m1l2v m1l2b1

1 0 0 0

 q̇lin +


Yβ1 −Yψ̇1

− Yβ1
l2
v

−Yβ2 − Yβ1 (m1 +m2)v − Yψ̇2
− Yβ1

b1
v

Yβ1b1 −(Yψ̇1
+ Yβ1

l2
v

)b1 −Nβ2 − Yβ1b1 m1vb1 −Nψ2 − Yβ1
b21
v

Nβ1 + Yβ1 l2 −Nψ1−Yψ̇1
l2−Yβ1

l22
v
−Nβ1

l2
v

−Nβ1 − Yβ1 l2 m1l2v − (Nβ1 + Yβ1 l2) b1
v

0 −1 0 1

qlin

... =


Yδ1 Yδ2
Yδ1b1 Nδ2

Nδ1 + Yδ1 l2 0
0 0

u ,

(A.55)

which is equal to (3.65). The explicit linear model equations
0 m1l2 (m1 +m2)v m1b1
0 m1l2b1 m1b1v m1b

2
1 + I2

0 m1l
2
2 + I1 m1l2v m1l2b1

1 0 0 0


︸ ︷︷ ︸

˜M

q̇lin + ...


Cf1 + Cr1 Cr1

l3−l2
v

− Cf1
l1+l2
v

− (Cf2 + Cm2 + Cr2 + Cf1 + Cr1) (m1+m2)v +Cf2
b2
v

+Cm2
b3
v

+Cr2
b4
v
−(Cf1+Cr1) b1

v

Cf1b1 + Cr1b1 Cr1b1
l3−l2
v

− Cf1b1
l1+l2
v

Cf2b2+Cm2b3+Cr2b4−Cr1b1−Cf1b1 m1vb1 − Cf2
b22
v
− Cm2

b23
v
− Cr2

b24
v
− Cr1

b21
v
− Cf1

b21
v

Cf1(l1+l2)−Cr1(l3−l2) −Cr1 (l3−l2)2

v
−Cf1

(l1+l2)2

v
Cr1(l3 − l2) − Cf1(l1 + l2) m1l2v + Cr1b1

l3−l2
v

− Cf1b1
l1+l2
v

0 −1 0 1


︸ ︷︷ ︸

˜D

qlin

... =

 −Cf1 −Cr2
−Cf1b1 Cr2b4

−Cf1(l1 + l2) 0


︸ ︷︷ ︸

˜H

u.

(A.56)

can be obtained by expressing the tire forces not with the terms Yβ1 , Yψ̇1
, Yδ1 , Nβ1 , Nψ̇1

and Nδ1 , but with the explicit description according
to (3.28)-(3.31) as explained in the following.
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In order to find the relation between the Y-/N- parameters and the tire forces, the right side of the
equations (A.45)-(A.46) can be used,

− Fyf1 − Fyr1
(3.28)

= − Cf1αf1 − Cr1αr1 =Yβ1
β1 + Yψ̇1

ψ̇1 + Yδ1δ1
(A.57)

− Fyf1l1 + Fyr1l3
(3.28)

= − Cf1αf1l1 + Cr1αr1l3 =Nβ1
β1 +Nψ̇1

ψ̇1 +Nδ1δ1
(A.58)

− Fyf2 − Fyr2 − Fyr1
(3.29)

= − Cf2αf2 − Cr2αr2 − Cr1αr1 =Yβ2
β2 + Yψ̇2

ψ̇2 + Yδ2δ2
(A.59)

Fyf2b2 + Fym2b3 + Fyr2b4
(3.29)

= Cf2αf2b2 + Cm2αr2b3 + Cr2αr1b4 =Nβ2
β2 +Nψ̇2

ψ̇2 +Nδ2δ2 .

(A.60)

With the substitution of the slip angles (3.30)-(3.31) and equating the coefficients, the Y-/N-
parameters can be determined equal to (3.66)-(3.69). They are also called the partial deriva-
tives of the lateral tire forces Ftractor tires and Fsemitrailer tires and tire yaw moments Mtractor tires

and Msemitrailer tires,

Yβ1 =
∂

∂β1
Ftractor tires Yψ̇1

=
∂

∂ψ̇1

Ftractor tires Yδ1 =
∂

∂δ1
Ftractor tires (A.61)

Nβ1
=

∂

∂β1
Mtractor tires Nψ̇1

=
∂

∂ψ̇1

Mtractor tires Nδ1 =
∂

∂δ1
Mtractor tires (A.62)

Yβ2
=

∂

∂β2
Fsemitrailer tires Yψ̇2

=
∂

∂ψ̇2

Fsemitrailer tires Yδ2 =
∂

∂δ2
Fsemitrailer tires (A.63)

Nβ2
=

∂

∂β2
Msemitrailer tires Nψ̇2

=
∂

∂ψ̇2

Msemitrailer tires Nδ2 =
∂

∂δ2
Msemitrailer tires . (A.64)

A.6 Symbolic derivation of the equations of motion using
MATLAB

In this section are some Matlab-Codes listed, which are tested in Matlab 7.12.0 (R2011a) and
whereby the Symbolic-Toolbox is used.

Listing A.1: Matlab-Code for the derivation of the nonlinear equations of motion of the TST
according the Newton Euler approach by using the Symbolic-Toolbox.

%% Calc Nonlinear Equation of Tractor−Semitrailer with Newton−Euler−Equ
% −−> general coordinates x2 and y2 describes the semitrailer c.g.;
% psi2 and psi1 describes the orientation angles
%
% references:
% #1 Book (PoppSchiehlen2010) Popp, K. & Schiehlen, W.
% Ground Vehicle Dynamics
% Springer−Verlag Berlin Heidelberg, 2010
% #2 A. A. Shabana. Dynamics of Multibody Systems.
% Cambridge University Press, Cambridge, 3 edition, 2005.

% generalized coordinates:
syms x2 y2 psi2 psi1 Dx2 Dy2 Dpsi2 Dpsi1 D2x2 D2y2 D2psi2 D2psi1
syms m1 I1 m2 I2 l 1 l 2 l 3 b 1 b 2 b 3 b 4 t

% generalized coordinates
q = [x2; y2; psi2; psi1];
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Dq = [Dx2; Dy2; Dpsi2; Dpsi1];
D2q = [D2x2; D2y2; D2psi2; D2psi1];

% Position and Rotation of the tractor's(r 1) and semitrailer's(r 2) c.g.
r 1 = [x2+b 1*cos(psi2)+l 2*cos(psi1); y2+b 1*sin(psi2)+l 2*sin(psi1); 0];
r 2 = [x2; y2; 0];
omegl 1 = [0; 0; Dpsi1];
omegl 2 = [0; 0; Dpsi2];

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% prepare timedependent auxiliary variables als Taylor−Series for
% implicit derivative
x2 = x2 + Dx2*t + 1/2*D2x2*t ˆ2;
y2 = y2 + Dy2*t + 1/2*D2y2*t ˆ2;
psi2 = psi2 + Dpsi2*t + 1/2*D2psi2*t ˆ2;
psi1 = psi1 + Dpsi1*t + 1/2*D2psi1*t ˆ2;
q = [x2 ; y2 ; psi2 ; psi1 ];

% Calculate the velocities
% substitute the auxiliary terms
r 1 = subs(r 1,q,q );
r 2 = subs(r 2,q,q );
% Now it is possible to obtain the time derive explicitly, because
% the quantities are explicitly dependent of the time
v 1 = diff(r 1 ,'t ');
v 2 = diff(r 2 ,'t ');
% Set t =0 to eliminate the nonrelevant auxilliary terms
v 1 = subs(v 1 ,t ,0);
v 2 = subs(v 2 ,t ,0);

% Calculate the accelerations
l 1 = diff(v 1 ,'t ');
l 2 = diff(v 2 ,'t ');
% Set t =0 to eliminate the nonrelevant auxilliary terms
ac 1 = subs(l 1 +t ,t ,0);
ac 2 = subs(l 2 +t ,t ,0);

% Jacobian−Matrices
J T1 = jacobian(r 1,q);
J T2 = jacobian(r 2,q);
J R1 = jacobian(omegl 1,Dq);
J R2 = jacobian(omegl 2,Dq);
J = [J T1; J T2; J R1; J R2];

% Calculate the local accelleration:
% ai = Ji*D2q + ai lok −−> ai lok = ai − Ji*D2q
l 1q = simplify(ac 1−J T1*D2q);
l 2q = simplify(ac 2−J T2*D2q);

% Vector of generalized gyroscopic forces including the Coriolis and
% centrifugal forces as well as the gyroscopic torques (#1, Pages 67, 75)
k dash = simplify([m1*l 1q; m2*l 2q; zeros(6,1)]);

% Def Mass / Interia
M glob = [m1*eye(3,3) zeros(3,3) zeros(3,3) zeros(3,3); ...

zeros(3,3) m2*eye(3,3) zeros(3,3) zeros(3,3); ...
zeros(6,12)];

M glob(9,9) = I1;
M glob(12,12) = I2;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Consider the Tire−Forces in x,y,z on each body −−> Calc q e − Vector (#1)
syms F yf1 F yr1 F yf2 F ym2 F yr2 F aux delta1 delta2
q dash e = ...

[ F yf1*sin(psi1+delta1) + F yr1*sin(psi1) + F aux*cos(psi1); ...
−F yf1*cos(psi1+delta1) − F yr1*cos(psi1) + F aux*sin(psi1); ...
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0; ...
F yf2*sin(psi2) + F ym2*sin(psi2) + F yr2*sin(psi2+delta2);...
−F yf2*cos(psi2) − F ym2*cos(psi2) − F yr2*cos(psi2+delta2);...
0; ...
0; ...
0; ...
−F yf1*l 1*cos(delta1) + F yr1*l 3; ...
0; ...
0; ...
F yf2*b 2 + F ym2*b 3 + F yr2*b 4*cos(delta2)];

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Equations of motion (Neuton−Euler) in I−sys
% M glob(q,q dot)*J*D2q + k dash(q,q dot) = q dash e + Q*lambda
% J'*| M glob(q,q dot)*J*D2q + k dash(q,q dot) = q dash e + Q*lambda
% −−> J'*Q = 0
M = simplify(J.'*M glob*J)
k = simplify(J.'*k dash)
q e = simplify(J.'*q dash e)

Listing A.2: Matlab-Code for the transformation of equations of motion to the trailer-fixed refer-
ence frame by using the Symbolic-Toolbox.
%% Transfer Equations of Motions to the trailer−fixed reference frame:
% Prepare Transformation I−sys to S−sys according #1:
% S Phi I* | M(q,q dot)*D2q + k(q,q dot) = q e
%
% with: q dot = I Phi S * q dot s
% −−> q dot2 = I Phi S * q dot2 s + I Phi S dot * q dot s

% generalized coordinates
syms x2 y2 psi2 psi1 Dx2 Dy2 Dpsi2 Dpsi1 D2x2 D2y2 D2psi2 D2psi1 t
q = [x2; y2; psi2; psi1];
q s = [x2 y2 psi2 psi1].';
Dq s = [Dx2 Dy2 Dpsi2 Dpsi1].';
D2q s = [D2x2 D2y2 D2psi2 D2psi1].';
I Phi S = [cos(psi2) −sin(psi2) 0 0;

sin(psi2) cos(psi2) 0 0;
0 0 1 0;
0 0 0 1];

% Calc time derivative:
% prepare timedependent auxiliary variables als Taylor−Series for
% implicit derivative
x2 = x2 + Dx2*t + 1/2*D2x2*t ˆ2;
y2 = y2 + Dy2*t + 1/2*D2y2*t ˆ2;
psi2 = psi2 + Dpsi2*t + 1/2*D2psi2*t ˆ2;
psi1 = psi1 + Dpsi1*t + 1/2*D2psi1*t ˆ2;
q = [x2 ; y2 ; psi2 ; psi1 ];
% substitute the auxiliary terms
I Phi S = subs(I Phi S,q,q );
% Now it is possible to obtain the time derive explicitly, because
% the quantities are explicitly dependent of the time
I Phi S dot = diff(I Phi S ,'t ');
% Set t =0 to eliminate the nonrelevant auxilliary terms
I Phi S dot = subs(I Phi S dot ,t ,0);

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Do Trafo
M s = simplify(I Phi S.'*M*I Phi S)
k s = simplify(I Phi S.'*M*I Phi S dot*Dq s + ...

I Phi S.'*k)
q e s = simplify(I Phi S.'*q e)
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Listing A.3: Matlab-Code for the derivation of the roll-extended single-track model of the TST
using the Symbolic-Toolbox.

syms Gamma Dpsi 1 Dpsi 2 beta 1 beta 2 phi 1 phi 2 Dphi 1 Dphi 2 delta 1 delta 2
syms DGamma D2psi 1 D2psi 2 Dbeta 1 Dbeta 2 D2phi 1 D2phi 2 delta 1 delta 2
syms m1 m2 g l 2 b 1 v 1 v 2 h 1 h 2 z 1 z 2 d 1 d 2 c 1 c 2 c c
syms Iz2 Iyy2 Ixz2 Ixx2 Iz1 Iyy1 Ixz1 Ixx1
syms Y beta1 Y r1 Y delta1 Y beta2 Y r2 Y delta2 F c
syms N beta1 N r1 N delta1 N beta2 N r2 N delta2
syms Dphi 1 Dphi 2 % auxilliary vars for state−space−representation
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−− Tractor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% lateral1 equ:
lateral1 str = strcat('m1*v 1*(Dpsi 1 + Dbeta 1) − m1*D2phi 1*h 1 = ', ...

'Y beta1*beta 1 + Y r1*Dpsi 1 + Y delta1*delta 1 + F c');
F c1 = solve(lateral1 str,'F c');
lateral1 = m1*v 1*(Dpsi 1 + Dbeta 1) − m1*D2phi 1*h 1 ...

− Y beta1*beta 1 − Y r1*Dpsi 1 − Y delta1*delta 1 − F c ; % = 0

% yaw1 equ:
yaw1 = Iz1*D2psi 1 − Ixz1*D2phi 1 ...

− N beta1*beta 1 − N r1*Dpsi 1 − N delta1*delta 1 + F c*l 2; % = 0

% roll1 equ:
roll1 = (Ixx1 + m1*h 1ˆ2)*D2phi 1 − m1*v 1*(Dpsi 1 + Dbeta 1)*h 1 ...

− Ixz1*D2psi 1 − m1*g*h 1*phi 1 + c 1*phi 1 + d 1*Dphi 1 ...
+ c c*(phi 1−phi 2) + F c*z 1; % = 0

% −−−−−−−−−−−−−−−−−−−−−−−−−−− Semitrailer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% lateral2 equ:
lateral2 = m2*v 2*(Dpsi 2 + Dbeta 2) − m2*D2phi 2*h 2 ...

− Y beta2*beta 2 − Y r2*Dpsi 2 − Y delta2*delta 2 + F c; % = 0

% yaw2 equ:
yaw2 = Iz2*D2psi 2 − Ixz2*D2phi 2 ...

− N beta2*beta 2 − N r2*Dpsi 2 − N delta2*delta 2 + F c*b 1'; % = 0

% roll2 equ:
roll2 = (Ixx2 + m2*h 2ˆ2)*D2phi 2 − m2*v 2*(Dpsi 2 + Dbeta 2)*h 2 ...

− Ixz2*D2psi 2 − m2*g*h 2*phi 2 + c 2*phi 2 + d 2*Dphi 2 ...
− c c*(phi 1−phi 2) − F c*z 2'; % = 0

% −−−−−−−−−−−−−−−−−−−−−−− Coupling Conditions −−−−−−−−−−−−−−−−−−−−−−−−−−−−
beta 1 = −Gamma + beta 2 + l 2/v 2*Dpsi 1 + b 1/v 1*Dpsi 2 ...

+ z 1/v 1*Dphi 1 − z 2/v 2*Dphi 2;

Dbeta 1 = Dpsi 2 − Dpsi 1 + Dbeta 2 + l 2/v 1*D2psi 1 ...
+ b 1/v 2*D2psi 2 + z 1/v 1*D2phi 1 − z 2/v 2*D2phi 2;

kin constraint = Dpsi 2 − Dpsi 1 + Dbeta 2 − Dbeta 1 + l 2/v 1*D2psi 1 ...
+ b 1/v 2*D2psi 2 + z 1/v 1*D2phi 1 − z 2/v 2*D2phi 2; % = 0

Gamma constraint = DGamma − Dpsi 1 + Dpsi 2;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Elliminate Fc to derive the linear equations of motion
q rlin = [Gamma; Dpsi 1; beta 2; Dpsi 2; Dphi 1; phi 1; Dphi 2; phi 2];
Dq rlin = [DGamma; D2psi 1; Dbeta 2; D2psi 2; D2phi 1; Dphi 1 ; D2phi 2; Dphi 2 ];
u lin = [delta 1; delta 2];

subs old = {'beta 1';'Dbeta 1'}; % Prepare the constraint substitutions
subs new = [beta 1 ;Dbeta 1 ];

% Row1 lateral1 −−> lateral2
lat1lat2 = subs(subs(lateral2,'F c',F c1),subs old,subs new);

% Row2 lateral1 −−> yaw2
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lat1yaw2 = subs(subs(yaw2,'F c',F c1),subs old,subs new);

% Row3 lateral1 −−> yaw1
lat1yaw1 = subs(subs(yaw1,'F c',F c1),subs old,subs new);

% Row5 lateral1 −−> roll1
lat1roll1 = subs(subs(roll1,'F c',F c1),subs old,subs new);

% Row6 lateral1 −−> roll2
lat1roll2 = subs(subs(roll2,'F c',F c1),subs old,subs new);

M r = sym('M r', [length(q rlin),length(q rlin)]);
for idx = 1:length(q rlin)

M r(1,idx) = simplify(diff(lat1lat2,Dq rlin(idx)));
M r(2,idx) = simplify(diff(lat1yaw2,Dq rlin(idx)));
M r(3,idx) = simplify(diff(lat1yaw1,Dq rlin(idx)));
M r(4,idx) = simplify(diff(Gamma constraint,Dq rlin(idx)));
M r(5,idx) = simplify(diff(lat1roll1,Dq rlin(idx)));
M r(6,idx) = simplify(diff(lat1roll2,Dq rlin(idx)));
M r(7,idx) = simplify(diff(Dphi 1 ,Dq rlin(idx)));
M r(8,idx) = simplify(diff(Dphi 2 ,Dq rlin(idx)));

end
M r % Display the matrix

P r = sym('P r', [length(q rlin),length(q rlin)]);
for idx = 1:length(q rlin)

P r(1,idx) = −simplify(diff(lat1lat2,q rlin(idx)));
P r(2,idx) = −simplify(diff(lat1yaw2,q rlin(idx)));
P r(3,idx) = −simplify(diff(lat1yaw1,q rlin(idx)));
P r(4,idx) = −simplify(diff(Gamma constraint,q rlin(idx)));
P r(5,idx) = −simplify(diff(lat1roll1,q rlin(idx)));
P r(6,idx) = −simplify(diff(lat1roll2,q rlin(idx)));
P r(7,idx) = −simplify(diff(−Dphi 1,q rlin(idx)));
P r(8,idx) = −simplify(diff(−Dphi 2,q rlin(idx)));

end
P r % Display the matrix

H r = sym('H r', [length(q rlin),length(u lin)]);
for idx = 1:length(u lin)

H r(1,idx) = −simplify(diff(lat1lat2,u lin(idx)));
H r(2,idx) = −simplify(diff(lat1yaw2,u lin(idx)));
H r(3,idx) = −simplify(diff(lat1yaw1,u lin(idx)));
H r(4,idx) = −simplify(diff(Gamma constraint,u lin(idx)));
H r(5,idx) = −simplify(diff(lat1roll1,u lin(idx)));
H r(6,idx) = −simplify(diff(lat1roll2,u lin(idx)));
H r(7,idx) = −simplify(diff(−Dphi 1,u lin(idx)));
H r(8,idx) = −simplify(diff(−Dphi 2,u lin(idx)));

end
H r % Display the matrix
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Vehicle Animation with
MatCarAnim

Within this work, an animation- or visualization-toolbox named as MatCarAnim was developed for
the Matlab®-enviroment. It was tested in Matlab®-R2011b.
The Toolbox contains various Matlab® m-Functions structured in figure B.2, which provide vi-
sualization and animation tools like “coordinate transformations” and functions for the creation
of basic drawings. Furthermore it uses a structure variable, which allows the storage of model
parameters and settings. It is shown in figure B.3 and allows arbitrary extensions. The whole tool-
box functions and documentation will be provided soon, on the Mathworks file exchange website
http://www.mathworks.com/matlabcentral/fileexchange/.

Figure B.1: 3D view of a tractor-semitrailer with a steerable rearmost axle, created by the Mat-
CarAnim toolbox.
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Figure B.2: Structure of the MatCarAnim-software.
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Figure B.3: Structure of the MatCarAnim-struct.



List of Figures

1.1 Rollover of a real TST in Zhejiang (China) in April 2011. This screen-shots are
retouched and extracted from the video of a monitoring camera, published on the
website www.youtube.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Tractor and semitrailer (TST) with an actively steered rearmost axle. . . . . . . . . 2
1.3 Tractor with a steered (a) or unsteered (b) semitrailer during a low-speed turning

circle maneuver (german: “BO-Kraftkreis”), required by the European road traffic
regulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Tire axis system and terminology according to SAE-standards [SAE76]. . . . . . . . 5
2.2 Origin of lateral forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Approximation of the lateral force in dependence of the slip angle according to Pace-

jka’s tire model [Pac02] (SAE: Cα < 0). . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Conception of a single-track-model (Bicycle Model) based on an Ackermann steering. 7
2.5 Geometric conditions for a single-track-model of a two-axle vehicle for steady state

cornering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Single-track-model of a two-axle vehicle at high velocity. . . . . . . . . . . . . . . . . 10
2.7 Single-track-model of a three-axle truck in a steady-state, very low-speed turn. . . . 12
2.8 Derivation of the equivalent wheelbase leq of a three-axle truck in a steady-state

low-speed turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Single-track-model of a three-axle truck in steady-state on a very low-speed turn. . . 14
2.10 Body coordinates of a trailer combination train. . . . . . . . . . . . . . . . . . . . . . 15
2.11 Steady-state control strategy according to [vdV11]. . . . . . . . . . . . . . . . . . . . 16

3.1 Top view of the Single Track Model of a Tractor and Semitrailer(TST) with a steered
rearmost axle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Coordinate transformation of the TST-Single Track Model. . . . . . . . . . . . . . . 23
3.3 Calculation of the body velocities in order to obtain the body slip angels β1 and β2. 26
3.4 Top view of the hitch kinematic for the derivation of the coupling condition. . . . . . 27
3.5 3D view of the hitch kinematic for the derivation of the coupling condition for a

yaw-roll model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Roll-extended single track model of the TST with a steered rearmost axle . . . . . . 33
3.7 Kinematic of the tractor-semitrailer coupling-hitch in the horizontal and vertical

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Five-DOF tractor-semitrailer model, which includes a rollover consideration. . . . . . 38
3.9 Screenshot of the multi-body simulation SimPack model. . . . . . . . . . . . . . . . 40

4.1 Feedback control system for the cruise control. . . . . . . . . . . . . . . . . . . . . . 41
4.2 Feedback control system for the cruise control. . . . . . . . . . . . . . . . . . . . . . 42
4.3 A hypothetical target-path polygon, defined by path points and created by developed

the functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Strategy of the virtual drivers controller of the tractor front steer angle δ1. . . . . . . 43

75



76 List of Figures

4.5 Feedback control system for the tractors steering control. . . . . . . . . . . . . . . . 44
4.6 Considered path point of the virtual driver are limited to a certain range. . . . . . . 44

5.1 Structure of the global process chain for the tractor-semitrailer simulation. . . . . . . 48
5.2 Simulation structure of the lateral-yaw models for the investigation of the track-tracing. 49
5.3 Bode diagram of the amplitude frequency response Gψ̇2δ2

(jω) of the yaw transfer
function at different TST velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Bode diagram of the frequency response Gφ̇2δ2
(jω) of the roll-transfer function at

different TST velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Animation of a tractor with an unsteered semitrailer entering a roundabout. The

simulation results were calculated with the “Nonlinear Lateral-Yaw Model”
∑

TST

and the animation was created with the Toolbox MatCarAnim. . . . . . . . . . . . 53
5.6 Position-trajectories of the different models with an unsteered semitrailer and at a

velocity of 20km/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Trajectories of the nonlinear and linear “Lateral-Yaw-Roll” models with an unsteered

semitrailer and at a velocity of 35km/h. . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Explanation of β1, the body slip angle of the tractor. . . . . . . . . . . . . . . . . . . 63
A.2 Single Track Model of Tractor and Semitrailer(TST) with a steered rearmost axle

for the derivation of the linear equations. . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 3D view of a tractor-semitrailer with a steerable rearmost axle, created by the Mat-
CarAnim toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.2 Structure of the MatCarAnim-software. . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3 Structure of the MatCarAnim-struct. . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Bibliography

[AO98] J. Ackermann and D. Odenthal. Robust steering control for active rollover avoidance
of vehicles with elevated center of gravity. Technical report, DLR, German Aerospace
Center, Institute of Robotics and System Dynamics, 1998.

[AO99] J. Ackermann and D. Odenthal. Damping of vehicle roll dynamics by gain scheduled
active steering. Technical report, DLR, German Aerospace Center, Institute of Robotics
and System Dynamics, Oberpfaffenhofen, D-82230 Wessling, Germany, 1999.

[Boe11] S. Boehl. Lenkstrategie für einen aktiv gelenkten Sattelauflieger. Semesterthesis, Insti-
tute for Dynamic Systems and Control - Swiss Federal Institute of Technology (ETH)
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